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Abstract

The objectives of this research are: (1) to develop and implement a new methodology for

large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic
turbulence closures for statistical description of chemically reacting turbulent flows. We have

just completed the third year of Phase III of this research. This is the Final Report of our
activities on this research sponsored by the NASA LaRC under Grant NAG-l-1122.

Technical Monitor

Dr. J. Philip Drummond (Hypersonics Air-Breathing Propulsion Branch, NASA LaRC, Mail Stop

197. Tel: 757-864-2298) is the Technical Monitor of this Grant.

I Summary of Achievements

We just completed Year 3 of the Phase III activities on this NASA LaRC sponsored project (Grant

NAG-l-l_22). The total time allotted for this phase is three years; this phase was followed at the

conclusion of Phase II activities {also for three years). In total we have completed 9 years of LaRC

supported research. This is the Final Report and provides a summary of our accomplishments in

Phase III of this research (August 1, 1996 - July 31, 1999). Our work in this phase consists of the

following two constituents: (1) development of LES methodologies via probability density function

(PDF) methods and numerical solution of the PDF via Monte Carlo schemes,, and (2) Development

of algebraic turbulence closures for statistical description chemically reacting turbulent flows. Each

of these two constituents are discussed below in order:



1.1 LES of Turbulent Reacting Flow

A methodology termed the "filtered density function" (FDF) is developed and implemented for LES

of chemically reacting turbulent flows [1]. In this methodology, the effects of the unresolved scalar

fluctuations ore taken into account by PDF of subgrid scale (SGS) scalar quantities. A transport

equation is derived for the FDF in which the effect of chemical reactions appears in a closed form.

The influences of scalar mixing and convection within the subgrid are modeled. The FDF transport

equation is solved numerically via a Lagrangian Monte Carlo scheme [2] in which the solutions of

the equivalent stochastic differential equations (SDEs) ore obtained. These solutions preserve the

ItS-Gikhman nature of the SDEs. The consistency of the FDF approach, the convergence of its

Monte Carlo solution and the performance of the closures employed in the FDF transport equation

are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by

conventional LES procedures in which the first two SGS scalar moments are obtained by a finite

difference method (LES-FD). These comparative assessments are conducted by implementations of

all three schemes (FDF, DNS and LES-FD) in a temporally developing mixing layer and a spatially

developing planar jet under both non-reacting and reacting conditions. In non-reacting flows, the

Monte Carlo solution of the FDF yields results similar to those via LES-FD. The advantage of

the FDF is demonstrated by its use in reacting flows. In the absence of a closure for the subgrid

scalar fluctuations, the LES-FD results are significantly different from those based on DNS. The

FDF results show a much closer agreement with filtered DNS results. The results of this work ore

published in Kefs. [3,4] and are provided in Appendix I and Appendix II.

We have also developed a methodology, termed the "filtered mass density function" (FMDF) for

LES of variable density chemically reacting turbulent flows. This methodology is based on the

extension of the FDF and represents the joint probability density function of the subgrid scale

(SGS) scalar quantities. The FMDF is obtained by solution of its modeled transport equation.

In this equation, the effect of chemical reactions appears in a closed form and the influences of

SG$ mixing and convection are modeled. The stochastic differential equations (SDEs) which yield

statistically equivalent results to that of the FMDF transport equation are derived and are solved

via a Lagrangian Monte Carlo scheme. The consistency, convergence, and accuracy of the FMDF

and the Monte Carlo solution of its equivalent SDEs are assessed. In non-reacting flows, it is shown

that the filtered results via the FMDF agree well with those obtained by LES-FD. The advantage of

the FMDF is demonstrated in LES of reacting shear flows with nonpremixed reactants. The FMDF

results are appraised by comparisons with data generated by direct numerical simulation (DNS) and

with experimental measurements. In the absence of a closure for the SGS scalar correlations, the

results based on the LES-FD are significantly different from those obtained by DNS. The FMDF

results show a closer agreement with DNS. These results also agree favorably with laboratory

data of exothermic reacting turbulent shear flows, and portray several of the features observed

experimentally. This work is described in detail in Appendix III. This appendix is scheduled to be

pubfshed in Journal of Fluid Mechanics [5].
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We haverecentlyextended the FDF methodology to also include the velocity field. Some prelim-

inary results axe provided in Appendix IV. In this portion of our work, the joint-velocity filtered

density function of the velocity (VFDF) is considered. A transport equation is proposed for the

VFDF in which the unclosed terms axe modeled in a manner analogous to conventional second

order subgrid scales closures [6]. The modeled VFDF transport equation is solved numerically via

a Lagramgian Monte Carlo scheme in which the solutions of the equivalent stochastic differential

equations axe obtained. The consistency and the convergence of the simulated results axe assessed

by comparison with results obtained by LES-FD in which the equivalent transport equations of the

subgrid scale moments axe solved. The accuracy and reliability of the velocity FDF are also assessed

via comparison with DNS and experimental data. The DNS data axe those for a three-dimensional

(3D) temporal mixing layer, and experimental data are those of a 3D turbulent jet.

1.2 Algebraic Modhling

In this work, explicit algebraic scalar flux models which are valid for three-dimensional turbulent

flows are derived from a hierarchy of second-order moment closures. The mathematical procedure is

based on the Cayley-ttamilton theorem and is an extension of the scheme developed by Taulbee [7].

Several closures for the pressure-scalar gradient correlations are considered and explicit algebraic

relations are provided for the velocity-scalar correlations in both nonreacting and reacting flows.

In the latter, the role of the Damkohler number is explicitly exhibited in isothermal turbulent flows

with nonpremixed reactants. The relationship between these closures and traditional models based

on the Linear gradient diffusion approximation is theoretically established. The results of model

predictions are assessed via comparison with available laboratory data in turbulent jet flows. This

work is published in Ref. [8], which is included here as Appendix V.

The extension of the methodology above for high speed flow has also been completed. In this part

of our work, closure for the compressible portion of the pressure-strain covariance is developed. It

is shown that. within the context of a pressure-strain closure assumption linear in the Reynolds

stresses, an expression for the pressure-dilatation can be used to construct a representation for the

pressure-s'train. Additional closures for the unclosed terms in the Favrd-Reynolds stress equations

involving the mean acceleration are also constructed. The closures accommodate compressibility

corrections depending on the magnitude of the turbulent Mach number, the mean density gradient,

the mean pressure gradient, the mean dilatation, and, of course, the mean velocity gradients.

The effects of the compressibility corrections on the Favr6-Reynolds stresses are consistent with

current DNS results. Using the compressible pressure-strain and mean acceleration closures in the

Favrd-Revnolds stress equations an algebraic closure for the Favrd-Reynolds stresses is constructed.

:Noteworthy is the fact that, in the absence of mean velocity gradients, the mean density gradient

produces Favr6-Reynolds stresses in accelerating mean flows. Computations of the mixing layer

using the compressible closures developed are described. Favr6-Reynolds stress closure and two-

equation algebraic models are compared to laboratory data for the mixing layer. Experimental data
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from diverselaboratoriesforthe Favr&Reynolds stressesappearsinconsistentand, asa consequence,

comparison ofthe Reynolds stresspredictionstothe data isnot conclusive.Reductions ofthe kinetic

energy and the spread rateare consistentwith the sizabledecreasesseen in these classesof flows.

Appendix VI providesa complete descriptionofthisportionof our activities.This Appendix isto

be published in Physics Fluids in September 1999.
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A methodology termed the "filtered density function'" (FDF) is developed and implemented for

large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects

of the unresolved scalar flucmaxions are taken into account by considering the probability density

function (PDF) of subgrid scale (SGS) scalar quantities. A transport equation is derived for the FDF

m which the effect of chemical reactions appears in a closed form. The influences of scalar mixing

and convection within the subgrid are modeled. The FDF transport equation is solved numerically

via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential
equations (SDEs) are obtained. These solutions preserve the It6-Gikhman nanaz of the SDEs. The

consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance

of the clostm:s employed in the FDF Iransport equation a_ assessed by comparisons with results

obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the

first two SGS scalar moments are obtained by a finite difference method (LES-H3). Tne_

comparative assessments arc conducted by implementations of all three schemes (FDF, DNS and

LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both

non-reacting and rea_ng conditions. In non-reacting flows, the Monte Carlo solution of the FDF

yields results similar to those via LES-FD. The advanmse of the FDF is demonstmmd by its use in
reacRng flows. In the absence of a closure for the SGS scalar fluctmuions, the LES-FD resultsare

sighificandy different from those based on DNS. The FDF results show a much closer agreement

with filtered DNS results. © 1998 American Inaritute of Physics. [S1070-6631(98)01402-0]

I. INTRODUCTION

Over the past 30 years since the early work of

Smagorinsky, I significant efforts have been devoted to large

eddy simulanon (LES) of turbulentflOWS. 2-12 The most

prominent model has been the Smagorinsky eddy viscosity

closure which relates the unknown subgrid scale (SGS) Rey-
nolds stresses to the local large scale ram of flow strain. 13

This viscosityisaimed to provide the role of mimicking the

dissipativebehavior ofthe unresolvedsmall scales.Tic ex-

tensionsto "dynamic" models14"15have shown some im-

provements. This isparticularlythecasein transitionalflow

simulationswhere thedynamic evaluationsof theempirical

model "constant" resultin(somewhat) betterpredictionsof

the largescaleflow features.

A survey ofcombustionliteraturerevealsrelativelylittle

work m LES of chemicallyreactingturbulentflows.7"16It

appearsthatSchumann 17was one of thefirsttoconductLES

of a reactingflow. However, the assumption made in this

work simply to neglectthe conmbution of the SGS scalar

fluctuationstothe fiheredreactionrateneeds tobe justified

forgeneralapplications.The importanceofsuch fluctuations

iswell recognizedinReynolds averaged proceduresin both

combustion18-2°and chemical engineering21-24problems.

Therefore,itisnaturaltobelievethatthesefluctuationsare

also important in LES. McMuru'y et al., "q'_ Sykes et a/., z_

Liou et aL,_ Menon et aL, _ Boris et aL,3° Fureby et aL, n'_

Cook et al.,33"_ Mathey and Chollet, 3s Brauley and Jones 36

and others provide several means of conducting LES of tur-

buient reacting flows.

Modeling of scalar fluctuations in Reynolds averaged

methods has been the subject of broad investigations since

the pioneering work of Tom. 3v An approach which has [

proven paracularly useful is based on the probability density
function (PDF) or the joint PDF of scalar quantities. 3s-4t The

systemanc approach for determining the PDF is by means of [
• 42

solving the transport equation governing its evoluuon. In J
this equation, the effects of chemical _on _ in a "

closed form; this constitutes the primary advantage of the

PDF schemes in comparison to other stati_cal procedures.

The use of PDF for LES was suggested by Givi 7 and its fast
application is due to Madma and Givi. 43 In this work, the

Pearson family of distributions are assumed to charaeterizc

PDF of SGS scalars m homogeneous flows under chemical

equilibrium conditions. This procedure was also used by
Cook and Riley." The extensionof assumed PDF methods

for LES of non-equilibriumreactingshear flows is
by Frankeleta/.45While thegeneratedresultsare encourag-

ing,they do revealthe need formore systemanc schernes in

which the transportof the PDF of SGS scalarquantitiesare

1070-6631/98/10(2)/499117/_15.00 499 O 1998 AmoncsJ1InSMUtOof Physics



considered. PoPe '_ m_oduced the concept of "fllmn:d den-

sity function" (FDF) which is essentially _: FDF of SGS

scalarvariables.With a formal_cnl defimtiouofthe

FDF, Pope 16demonstratesthatthe effectsof chemicalreac-

tionappear ina closedform intheFDF transport,thusmak-

ing ita viablecandidatefor LF_ of chemicallyrcacnng

flows.Gao and O'Bnen e develop a transportequationfor

theFDF and offm"suggestionsformodeling oftheunclosed

terms inthisequation.

The objectiveof the presentwork isto furtherdemon-

stratethe applicabilityof tlm FDF and to provide results

based on itsimplementationforLF_.Sof chemicallyreacting

turbulent flows.Only theFDF ofscalarquantitiesisconsid-

ere& probabilitytreatmentof the subgridvelocityfltmtua-

tionsispostponed forfuturework.

II. FORMULATION

We consider an incompressible(unit density),isother-

mal, turbulentreactingflow involvingN, species.For the

mathematicaldescriptionof thisflow,theImmary transport

variables arc the velocity vector ui(x,t) (i= 1,2,3), the pres-

sure p(x,t), and the species"mm fi,_tions_,(Lt) (a

= 12......N,). The cquanons which govern thetransportof

thesevariablesin space (z:)and time (t)

8ui
-- =0, (1)
8.zi

auj + au_u/ _p Jr#
at ax---S=axj (2)

a_b= au:b,, aJ;
_+ .... +ca=, (3)

at 0x, axi

where U_a(X.r)" Wa(_(x,t)) denotes the chemical reaction

term for species a_ and _m[_bt ,_b2 ..... _bN,] denotes the

scalar array. Assuming a Newtoman flow with lick's law of

diffusion, the viscous stress tensor rq and mass flux J; are

represented by

( c)u, c)us'_ r Oeh.

where u is the fluid viscosity and F is the diffusion coeffi-

cient, F = v/Sc, and Sc is the molecular Schmidt number.

Large eddy simulauon involves the use of the spatial

fihenng operation 47

f 2f(x, O x,.x)dx'. (5)

where _ denotes the filter function, (.f(x,t))L re_esents the

filtered value of the transport variable f(x,t), and f' =f

-(.]')L denotes the fluctuations off from the filtered value.
We consider spatially and temporally mvanam and localized
filter functions, thus _(x',x)- G(x' - x) with the

properties, 47 G(x)=G(-x), and _'_.G(x)dx= 1. More-

over, we only consider "positive" filter functions as defined

by Verman et al. 4s for which all the moments f'_.x'_G(x)dx

extst for m _>O. The application of the filtering operation to

the transportequauons yields

#(ui)t. =0, (6)
ax,

a(r,,)L aT,,a<.j)____AL+ a( )L+ (7)
8t 8x, axs ax, ax, "

a<_.)L _. = +(Wa)L.
dt axi Ox, Jx,

(s)

wher_ Tijf(UiU/>L--(Ui)L(U/)L and M_,=(u,_b.)L

--(U_)L(_b.).denoU:the_b_d stressand the subpid mass

flux,respectively.

IlL CLOSURE STRATEGY

In _ ofnon-m_'tmg flowsthe closureproblem isas-

sociau_iwith_ Tq=("iuS)t--(ui)L(U/)L and M_=(ui_b,.)t.

-(ui)t.('_.)t..In _ flows,an additionalmodel isre-

qui_d for(_,,)L.Herr.,modeling of (m,,)tisthesubjectof

the in'obabilityformulationas descn'bedinthe nextsection.
For the formertwo, we make use of _fly available clo-

sur_ which are well-established in non-reactingflows. The

subgrid suressismodeled via

ro- - 2,,,(so),, (9)

W_ (Sij)L is th_ r_olved _ ri_ IEnsor and V# is th_

subgrid viscosity. We me two closures m mpmscm this vis-
cosity. The first is t_ same as that in the conventional Sma-

gorimky closu_ _

Ft = C A2G 4<Sij}L(Sij)L, (|0)

where AG is the filter size and C, is an empirical constant.
The drawbacks of this closure are well-recognized. _ I, an

anempt to overcome some of _ drawbacks, we also make
use of a second closurein which the subgridviscosityis

determinedbased on themodified subgridkineticenergy

v =CtAG_/I(U?)L(U'_>L--((U.*)L)L,<(U_')L)U I, (ll)

where u_=u,-_.di and o_, is a reference velocity in the xi

direction.The subscnpt L' dmaotesthe filter at thesecondary
levelwhich has a charammSsticsize(denotedby AG,) larger

than that of grid level filter. This model is essentially a modi-
fied versionof that proposed by Bardimt etaL,S_which uti-

lizeequal sizes for thegridand secondary filters. We refer to
this as the modified kinetic energy viscosity (MKEV) clo-

sl,tr_.

A similar model is used for the closure of the subgrid

mass fluxes _

a( _,.>L (12)
M;---r,a,----T-'

where F,= v,/Sc,, and Sc, is the subgrid Schmidt number
and is assumed constant.



IV. FILTERED DENSITY FUNCTION (FDF)

The key point in this formulmion is to consider the scalar

fluctuationsof the underlyingscalars' array d_(x.t)m a

pmbabilisuc ma.,_er.For d_t, we definethe "film_..dden-

sityfuncuon'" (FDF),denotedby PL, as]6

PL(W;x,t)- ff:e[_,d_(x',t)]G(x'-x)dx', (13)

N,

e[$,4,(x,0]= z_,,-$fx.t)]- H _,.-_.(x,t)],
8"|

(14)

where 8 denotes the delta function and _ denotes the com-

position domain of the scalar array. The term _d_-_r(x.t)]

is the "'fine-gra/ncd" density, ]9"4° and Eq. (13) implies that

the FDF is the spatially fdtered value of the finc.gra/ned

density. Thus, PL gives the density in the composibon space

of the fluid around x wcightcd by the fihcr G. With the

conditionof a positive film" kernel, u PL has a/1 the propca-
tics of tic PDF. 4°

For fuxtherdevelopments,it is useful to define the "'con-

ditional filtered value" of the variable O(x,t) by

f+_'Q(x',t)e[_It,d_(x',t)]G(x'- x)dx'

(Q( x't ) l _lr) Lm p L( tlt;x.t) '

(15)

where (aJ/g)L denotes the filtered value of or condidonod on

/3. _uation (15) implies

(i) For Q(x,t)=c, (O(x,t)lqOL=C, (16)

(ii) For Q(x.t)"O(@(x.t)). (Q(x.t)[_lr)L=O(qO. (17)

(iii) tntc_d pro_'_: (O(x.t))L

=/::(Olx, t))_),l',(_;x,t)aq,, (18)

where c isa constant,and {2(_(x,t))-'_(x,t)denolcsthe

case where the variable(2 can be complemly describedby

the compositionalvariable_(x.t). From thesepropcmes it

follows that the filtered value of any function of the scalar

variables (such as the reaction rate) is obtained by integration

over the composinon space

(Q( x,t))L= f :: o( qr) P L( qlt;x,t )dqlt. (19)

To develop a n-ansponeq_on forthe FDF, the time-

deriva_ve of Eq. (13)isconsidered

6PL(qt;x't) r" J_a(x',t) Je[_l[t, tl_(x'.t)]

J_.at Ot 0_o

xG(x'- x)dx'

_ 0 _- ad,,,(x',t)
atbo J_. at

x _[qP,dP(x',t)]G(x'-x)dx', (20)

wbeR d¢ summa_on conventionappliesto the speciessuf-

fix,a. This combined with Eq. (15)yields

Of = -- _a [\-_ /LPL(_';X,f) • (21)

Substituting Eq. (3) into Eq. (21) yields

--(:a,(tb)l_lOLlPL(ql_;x.t) } (22)

in which the convective term can be rcFrcscnted in the form

aw. [\ az, i_

a(u,l_)t.PL(_;x,t)
= (23)

The unclosed nmm_ of convection is denoted by the condi-

,/ore/filu_d value of the velocity which is funber decom-

posed imo resolved ,,,,a _ _ components. It is use-
fui to adopt the d_ompmition

(u,l_)¢P,=(u,),!'L+[(u_Jq').--(u,)L]P_,(24)

so that Eq. (21) can be expressed as

JPL O(U_)LPL O_(U_Iqt)L--(U,)L]PL
"1 l _.

Ot Oz_ Ox,

, ]+ l ",11
a¢,. \ ax_l Lp_

K d,.(_')P, ]
(25)

This is an exact transport equation for tim FDF aad is similar

to that presented by Gao and O'Brien. _ The lasttcrm on the

right hand side of this equation is due to chemical reaction
and is in a closed form. The second term on the left hand

side represents the filtered convection of the FDF in physical

spaceand isalsoclosed(provided(Ui) L isknown).The un-

closed terms are associaled with the first tm'm on the right

hand side denoting the effects of unrcsolvcd snbgrid scale

convection, and the second term on the right hand side rep-
resenting the influence of molecular diffusion.

The subgrid convective flux is modeled via

0Pt.

[(u_lq')_- (U_)L]P_=- r,-_-7__. (26)

The advantageofthe decomposition(Eq.(24))and d_ sub-

sequentmodel (Eq. (26))isd'autheyyieldresultssbrnilarto

thax in cunvenuonal LES for the first moment of the FDF.

The first moments corresponding to F.qs. (24) and (26) me

(Ui_/_a)L=(Ui)L(_a)L +[(Ui¢_a)L--(Ui)L(¢_a)L], (27)

[(u,_.)_- (u,)L($.)_]= - r, _, (2s)



' dXi(t) = Di(X(t),t)dt + E(X(t),t)dWi(t), (35)

where Xi is the Lagran_an position of a stochastic paracle,

D, and E are known as the "'drift"and "diffusion"coeffi-

cients,respectively,and W, dehorns the Wiener-I._vy

process.6sA comparison of the Fokker-Plankequauon cor-

respondingtoEq. (35)with theFDF wanspon equanon (32)

determinestheappropriatespecificationofthecoefficientsto

be

s-,/2(r+r,), o,,,<u,): (36)
axi

Thus the SDE which represents the spatial wan.sport of the
FDF is

ax,(t) + 0(r + r,)]a t-_x, j +[2(F+r')]tndW_"

(37)

The compositionalmakeup of the particlesevolves simulta-

neously due m theactionsof subgridmixing and reaction

d--7-= - fI,,(O,+- (4'..)L)+ w,,. (38)

where 4: = 4o(Xi(t),t)denotesthescalarvalueofthepar-

ticlewith theLagrangianpositionvectorXi.

In thenumericalimplementation,theFDF isrepresented

by an ensemble ofMonte Carlo particles,each witha setof

scalars_)(X_")(t).t) and LagrangianpositionvectorX _").

Numerically,a spliv.ingoperationisemployed m which the

wansport inthephysicaland the compositionaldomains are

treatedseparately.The simplestmeans ofsimulmingEq. (37)

isvia the Euler-Maruyamma approximationee

XT( it+1) = X_(tt) +D_(tt)At +E"(tt)(At)la_(tt),
(39)

where D_(t_)=Di(X(")(tt),t), E"(tt)=E(X(")(tt),t) and

_") is a random variable with the standard Gaussian PDF.

This formulanon p_serves the Markovian characterof the

diffusionprucess6)'69and facilitatesaffordablecomputa-

tions.Higher order numerical schemes for solving Eq. (37)
are available, e_ but one must be cautious in using them for

LES since the diffusion term in Eq. (35) depends on the

stochastic process X(t). The numerical scheme must pre-
serve the h6-Gikhrnan v°')l natu_ of the process. The coeffi-

cients D, and E require the input of the filtered mean veloc-

ity and the diffusivity (molecular and subgrid eddy). These

arc provided by the solution of Eqs. (6)-(12) by a finite

difference LES (as described below) on a fixed grid and then
interpolatedto theparticlelocation.

The compositionalvaluesare subjectto change due to

subgnd mixing and chemical reaction. Equation (38) may be
integratednumericallyto simulate these effects simulta-

neously.Alternately,thisequationisueaxed m a splitman-

ner.This providesan analyticalexpressionfor the subgrid

mixing.Subsequently,the influenceof chemical reactionis

determinedby evaluatingthe finegrainedreactionrams a_'_

and modifying thecompositionof the elements.The imple-

mcnmuon oftheSGS mixing and chemicalreactionrequires
the fihcredmean valuesof the scalars.These mean values

(and other higher moments of the F'DF) at a given point are

estim_'ued by consideration of particles within some volume

centered at the point of mmrest. Effectively, this finite vol-

ume cons_imms an "ensemble dommn'" characterized by the

lengthscaleA E (nottobe confused with As) inwhich the

F-'DFtsrepresenteddiscretelyby stochasticparuclcs.This is

necessaryas,withim'obabilityone,no particleswillcoincide

with the point as considered. _ Here, a box of size AE is used
to construct the ensemble mean values at the Rmm difference

nodes. These values are then interpolated to the particle po-

sitions. Since the mixing model only requires the input of the

filtered scalar value, and not its derivative, this volume av-

eraging pmoedme is sui_cienL However, from the numerical

standpoint,determinationofthesizeoftheensemble domain

isan importantissue.Ideally, itisdesiredto obtainthe sta-
tisticsfrom the Monm Carlo solution when the size of

sample domain is infinitelysmall(i.e.,AE----,0)and the num-

ber of particleswithinthisdomain isinfinitelylarge.With a

finitenumber of particles,ifA£ issmall theremay not be

e_ough particlesIoc,omu'uetthestatimcs.A largerensemble

domain decreases the su_dr.al corm, bm may increasethe

dispersion an_ which manifests itself in "'ardticially dif-

fused" suu_sticalresults.This cor_gumise between the s,_-

tisdcal accuracy and disper_ve accuracy as peraining toLa-

grangian Monte Carlo schemes implies that the optimum

magnitude ofAe cannot,ingeneral,he specifieda priori._°

This does not diminishthe capabilityof theprocedure,but

exemplifiestheimportanceof theparameterswhich govern

the stanstics.

'me LF_,Softhehydrodynamic variables,which alsode-

termines the subgrid viscosityand scalar diffusion coeffi-

cients,is conducted with the "'compact parameter'" finite

difference scheme of Carpenter. n This is a variantof the

McCormack n scheme in which a fourthordercompact dif-

ferencesareused toapproximatethespatialderivanves,and

a second order syrnmen'icimedictor-correctorsequence is

employed forrunediscmtizazion.The computationalscheme

is based on a hyperbolic solver which considers a Rdly com-

pressible flow. Here, the simulations are conducted with a

low Mach number (M--0.3) to minimize compressibility ef-
fects. The procedure involvedin the fimtedifferencediac_ti-

zationisindependentof the Monte Carlo solver,thusalter-

nativedifferencingschemes can be used ifdesired.All the

finite differenceoperations are conducted on fixed and

equallysizedgridpoints.The transferof informationfrom

thesepointstothelocationsof the Monte Carloparticlesis

conducted viainterpolation.Both fourth-orderand second-

order (bilinear)inun'polationschemes were considered,but

no significantdifferencesin SGS statisticswere observed.

The results presented in the next sectionare basedon simu-

lationswith fourth-and second-orderinterpolationsin two-

dimensional(2D) and 3D flows,respectively.

Vl. RESULTS

A. Flows simulated

To demonstratetheeffectivenessofthe FDF method, .in

thissectionsimulationresultsarepresentedof a temporally

developing mixing layerand a spatiallydeveloping planar



jet. Both non-reacting and reacting flows are considered. In
the latter, a simple reaction of the type .Af+ .ff_.,_e is con-

sidcredinwhich thereactionisassumed m be constantrate

and non-heat releasing(isothermalflow).Therefore,m4

= _._= -KAB, where K isa constantand A,B denote the

mass fractionsof species..,_,-if,respectively.The species

._, ._,_ are assumed thermodynamicallyidenticaland the

fluidisassumed tobe caloricallypedecL Both 2£) and 3D

simulationsare conductedof thetemporal mixing layer.The

jelsimulationsare 2£).

The temporal mixing layerconsistsof two coflowing

streams travelingm opposite disections with the same

speed.74-_ The _ts ._ and ._ are introducedintothe

top and the bottom slxearns,respectively.In theplan& jet.

the reactant_ isinjectedwith a high velocityfi'omajetof

width D intoa coflowmg stream with a lower velocitycar-

rying reactant..ff.76.nBoth these flows are dominated by

largescalecoherentsnrucmres.The formanon of theseswac-

turesare expeditedby imposing low amplitudepcnm'banons.

In thefigurespresentedbelow,x,y correspondtotimsu_4tm-

wise and ctoss-s_ directions,mspccuvely. In 3D, z de-

noms the spanwisc direction.In t_ mmporal mixing Layer,

the lengthinthe s_reamwiscdirectionischosen m be twice

the wavelength of the most unstablemode to allow forthe

rollupof two largevorticesand one (subsequent)pairingof

these vomces. In 3D, the lengthsin the sl_.arnwiscand the

oross-sn-camdirectionsare the same as those m 213.The

lengthinthe spanwisedirectionis60% ofthatm thesn'_am-

wise diz_tion.The forcingis imposed m such a way w

providesignificant3D n'ansport.W'm The initialvaluesofthe

mass fractionsofreactants._ and ._ ateach ofthe spanwise

points in 3D ate idenucalto those in 2D. The sizeof the

domain in the jet flow is0_x_14D, -3.SD_y_3.5D.

The velocityratioofthecoflowingsue.amtothatoftheinlet

jet iskept fixedat0.5.

Both flowsare simulatedvia both DNS and LEE. The

procedure in DNS is exclusivelybased on the Bnitc-

differencesolutionofEqs. (I)-(4)m which therem suffi-

Cientgridpointstoresolvethe flow withouta need forsub-

grid closures.The Wocedum inLF_ isbased on the Monm

Carlo solutionof the modeled FDF transportcqtmtion(Eq.

(32)) forthescalarsaugmented by the finitedifferencesohi-

non of the modeled cqu_ons of the filteredhydrodynanuc

variables{Eqs.(6)-{7)).In thept_sent._ionbelow, thesere-

sultsare identifiedby theabbreviationFDF. Inaddition,an-

otherLES isconductedinwhich themodeled transportcqua-

Uons for the filteredscalarand the generalizedsubgrid
variance are simulatedwith the fmilcdifferencescheme. In

these stmulauons,the hydrodynamic solverand the models

for thesubgridstressesand mass fluxesareidenticalm those

employed inFDF, but theeffectsof SGS flucto_tJonsm the

filteredre_uon rateareignored.Effectively.Eqs.(33)-(34)

arc solvedwith theassumpuon (ma(q)))L= a_,,((q_)L).The

resultsbased on thisprocedureare referredto as LES-FD.

(The approximation (m=(_))=f(wo((_)/.))/. was also con-
sidered but did not show an improvement over LES-FD.)

In both FDF and LES-FD simulations, the subgrid

s_'esses are modeled via the Smagorinsky closure (E_lS. (9)-

(I0)) and the MKEV model (Eq. (II)).The subgnd mass

fluxes are modeled viaEq. (12).No attemptismade hereto

determinethemagnitudesoftheconstantsappearinginthese

models m a dynamic manner,t4However, severaldifferent

values are considered forC, and C_. The values which give

the best overall agreement with DNS m non-reacting flows

are C:--0.014, 0.01 and Ct =0.0Z, 0.013, in 2D, 3D, respec-

tively. These values are subsequently used m FDF and

LES-FD of scalarquantities m t_cting flows.This param-

emriz._ionisjus_ed sincethe LF_.5of the hydrodynamic

fieldisnot thesubje_ ofour FDF closure.The othe:param-

eun_ Sc= 1, Sc_ffi0.7an: kept fixed.In the MKEV model,

ther_o ofthe filtersizeatthesecondaryleveltothatatthe

grid levelis AG,/Aoffi3. In the implementation of the

MKEV in the she,m"flowsas considm_, the magnitude of

the referencevelocity_i issc_to zero in the cross-s_ream

directionand to the average of the high and low speed

sn'eams in the snv.amwisc direction.The subgridmixing

model requi:_ the inputof the consumt Cn in the mixing

frequency which also _ the SGS variances. As will

be _zow'u below Co"3 is _zed, but the influence of

this perame_r is also m_died by con_d_ing other Cn val-

The flow variablesarenormalizedwith respecttorefer-

ence qua_ti_ d_mted by the subscript r. In the temporal

mixing lay_ the mfet_ce quantities are the freeslremn val-

ues and the length L_ is defined such that (_,olL_)ffi2.83,

where _oo is the initial vorticity thiclmess. In the planar jet,

L efD and the referenee quanntics mrc those at the. high

speed jet stream. The refc:encc qmmtities define the Rey-
nolds nu.mb_" l_ffi(U,.l.,,Iv). For tim mmporal mixing layer,

the Reynolds number based on the total velocitydifference

across the laye_ (AUffi 2U,) is given by Rea,0ffi5.66 Re. The

reaction raze is parameu=ized by the Damk_hier number
DafKI(UJL_). The non-dimensional time is given by t*

=(U,ML,). In the pms_t_ons below, the asmrisk is

dropped.

B. Numerical specifications

The magnitude of the flow parameters considered in the

simulmions are dicmu:d by tim resolution which can be af-

forded by DNS. The primary paramemrs are the flow Rey-
nolds number (Re), tim Damkfhler number (Da) and the mo-
lecular Schmidt number. All finitedifference simulations(in

both DNS and LES) are conducted on equally-spaced, square
(Ax=Ay=Az (for3D)=A) grids. Since the size of the

comput_onal domain is fixed, the number (and the size) of

the grids depends on type of simulation being conducted.

The highest r_solutionin DNS of the 2D mmporM, mixing

layerconsistsof433 X 577 gridpointswhich allowsreliable

DNS with Re=500 and Da=2 (based on the velocity differ-

ence and the voracity thicknessattheimtial time). The DNS

of the 3D temporal mixing layer is conducted on 217>(289

x 133 grid points with Re=400, Da= 1. The resolution m

DNS of the planar jet consists of 721X361 grid points and
allows accurate simulations with Re=12000 and Da=2

(based on the centerlme velocity at the inlet and the jet

width).

The FDF and LES-FD are conducted on gridscoarser



than those m DNS. Unless otherwise specified, the LES reso-

lutions in the mixing layer consist of 37 x 49 grid points m

2£), and 55 x 73 x 34 grid points in 3D. For the planar jet, a

resolutionof I01 ×51 isused for nonrcacung flow simula-

tionswith Re=5000, while a IgIx91 grid isutilizedfor

reactiveflow simulauons wlth Da=2 and Re= 1200(3.A

top-hatfilterfunction47of the form below isused

N D

G(x'-x)=H c(x:-x,),
i-I

(40)

I AG

C(x:-x,)= Ix:-x,l< T

0 Ix:-x,l> 

in which ND denotesthe number of dimensions, and A G

= 2A. No attemptismade to investigatethe sensitivityof
theresultstothe filterfunctionu orthe sizeof the filter,m

In FDF, the Monte Carlo particlesare distributedatt

= 0 throughout the domain. In the temporal mixing layer, the

particles are distributed evenly throughout the whole compu-

tational region.In the FDP of thejet.the particlesare sup-

pliedinitiallyin theinletregion- 1.75D_y_ 1.75D. In all

thesimulations,the particledensity is monitored atalltimes

to ensurean approximatelyuniform distributionthroughout

themixing regions.Inthetemporalmixing layer,due toflow

periodicityinthesucamwise direction,iftheparticleleaves

the domain at the right or the left boundary, new particles are

introduced at the other boundary with the same composi-

tional values. A similar procedure is employed in the span-

wise direction in 3D simulations. Due m mirror symmetry at

the upper and lower boundaries, particles that exit the top or

bottom boundaries return to the domain at the Ol_posite
boundary with the mass fractions values associated with ._

and ._ interchanged. In the spatial jet. new particles are in-

troduced at the inlet at a rate proportional to the local flow

velocity and with a compositional makeup dependent on the

y coordinate. The density of the Monte Carlo particles is

dcterminedby the initial number of particlesper grid cell

(NPG) of dimension AxA (xA in3D). The magnitude of

NPG isvaned toassessitsaffecton statisticalconvergence
ofthe Monte Carloresults.This assessmentisdemonsu'ated

in2D simulationsofthe temporalmixing layer.The simula-

tionsof 3D temporallayerand the spatialjetare based on

NPG = 20. The sizeof the "'ensembledomain" m tlm FDF

simulationsisalsovariedto assessitsinfluenceon the sta-

tisticalconvergence.The followingsizesare considered:

AE= 2A,A,A/2. The number of samples used to consmact

theFDF isthuscontrolledby thevaluesof NPG and A e .

An additionalparameterwhich influencesthenumerical

accuracyisthe magnitude of the incrementaltime step.The

stabilitycriterionforthe finitedifferencescheme requiresn

CFL_< I/v3 and ismore smngent than the criterionfor the

Fouriernumber. The effectof the time increment on the

accuracyof the Eulcr-Maruyamma scheme isalso consid-

ered.This isassessedby consideringseveralAt values(CFL

(a) (b)

FIG. 1. ZD mixm¢ Ira/or _ nmdL_: Comoms of the fil_d co_-

.=.v_d_. (a) FDF madCo)LES-FD.

numbers).In the contextof Iu3 calculus,s2J3thisissue is

consideredby analysisof moments of the FDF up to the
second order.

The s_.mulamd resultsare analyzed both "instanta-

mmnsly" aad "slatislically.'"In the former,the insumta-

neous contours(snap-shots)of the scalarvaluesare consid-

exed. In the lauer, the "'Reynolds-avenged" statistics

consuucted from the insumtaneousdam are considered.In

the spatially developing jet flow this averaging procedure is

conducted via sampling in time. In,the mmporal mixing

layer,the flowishomogeneous inx (andz in3D); thus the

sta_sticsaregeneratedby consmactmg theensemble from all

the gridpointsinthe mreamwise (andspanwise)directions.

These statistics are y-t (L--pcndenL All Reynolds averaged

resultsare denotedby an overbar.

C. Consistency of FDF and convergence of the Monte
Carlo procedure

The objective in the results presented in this subsection

istodcmonsu'am theconsistencyoftheFDF formulation and

the convergence of the Monte Carlo simulations.For this

purpose, the LES results via FDF and LES-FD are compared
againsteach other m shear flows under different conditions.

In non-reac_g flows, any deviations between the FDF and
LES-FD _snlts are amibuted to the differences in the nu-

merical procedures.Smcc the accm-acyof the finitediffer-

encc procedure is well-established, this comparative analysis

providesa good means of assessingthe performance of the

Monte Carlo solutionof the FDF. Unless specifiedother-

wise,the Smagormsk-y model is used to evaluatethe eddy

viscosityinthesimulationsconsideredinthissubsection.

In Fig.I, resultsare presentedof the LES of the non-

reactingtempornllydeveloping mixing layer.Shown in the

figureare the contourplotsof (A)L via (a) FDF and (b)

LES-FD, with A = 0, I on the bottom and tap slxeams,re-

spectively.These contourscorrespondto resultsat a time

when theflow has experiencedthepairingoftwo neighbor-

ing vortices.This figureprovidesa simplevisualdemonswa-

zionof the consistencyof the FDF as the resultsvia the

particlemethod are in agreement with those obtained by

LES-FD. Infact,theMonte Carlo resultsaresomewhat more
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am'active doe the Lagrangian nann-e of the solution proce-

duure. While the LES-FD results display slight over- and

under-shoo=, there are no such errors in the Monte Carlo

scheme.

A more rigorous means of assessing the FDF results is

via consideration of the Reynolds averaged results. Figures 2

and 3 show such resultsinthenon-re4mRngtemporalmixing

layer m which the sensitivity of the FDF predictions to sev-

end lmmmcmrs is assessed. Figure 2(a) shows the coml_ri-

son of FDF and LES-FD results for (A)L for several values

of A E . It is shown that the first faltered moment of the FDF

agrees very well with that obtained by I..F__-FD, ¢von for

large AE values. The diffcxences between the FDF and

LES-FD results are more app,___ntin Figs. 2(b,c,d) where the
cross-s_am variations of Gr_ are shown for several values of

AE and Ca and for different LES grid resolutions. As ex-

pected, Figs.2(b,c)show thatwith increasingCa, themag-

mmde of the variance decreases. These figures also indicate

that the difference between FDF and LES-FD predictions

dimimsh as A_ decreases. This is also corroborated in Fig.
2(d) in which the both FDF and LES-FD are conducted on

61X 81 grid points. At an A E values, the agreement between

FDF and LES-FD is belzer than those shown in Fig. 2(b)
with a lower finite difference resolution. The consistency of

the FDF and LES-FD results does not mean that the nmgni-

rode of Cn can be specified. Hertinafmr Cn = 3 is =dopted

since it provides the bestoverall mamh with DNS dam as
shown m the next subsection.

The other parameters which influence the accuracy of

the Monte Carlo results are the number of Monte Carlo par-

ticlesper grid ceLl (NPG) and the nmgnitud__eof the imm:-
mental time step.Figure3(a)shows thato-A valuesdo not

vary sign/ficanflyfor NPG>50. In factm other cases cvcn

smallerNPG valuescan be used as willbe shown. Figure

3(b)verifiestheinsensitivityofstansticsto At aslong as

stabilitycriterionis smisfied (CFL_lh/'J). Hereinafter,
CFL = 0.5 isused.

The sensitivityof theresultstoNPG and AE intheFDF

simulationsof a _g temporalmixing layerwith Da= 2

isstudiedinFig.4. In thesesimulations,theMKEV model is

adopted to evaluate the subgrid viscosity because it l_'rforrns

somewhat better than the Smagonnsk-y model for LES of

reactiveflows(asassessedby DNS data m the next subsec-

non).Shown in the figureare theReynolds averaged values

of the filtered product mass fzaction ((P)D at a fixed time

(Fig. 4___(a)) and the integrated total product (6e(t)
= f(e)L(y,t)dy). The convergence of Monte Carlo solution

and the independence to NPG and AE m_ dcmonsu-ated by
theseresults(atleastforthisfirstmoment). Moreover, itis

shown dmt whilethemean valueofthe scalarasused inthe

mixing model fora givenparticleshould be evaluatedatthe

paruclelocation,the mean valueatthe nearestfinitediffer-

ence gridpointcould alsobe substituted.This eliminatesthe

need for interpolaungthe mean scalarfieldto the particle
locations.

The consistencyand theconvergenceof theMonte Carlo

simulauon of the FDF inthe nonreactingjetflow are smn-

ma_zcd inFigs.5-6 inwhich thetime averaged(Reynolds)
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sunisrics for the first and second subgrid mom_Ls of A arc

prcscmcd. SLmLl,m"to zbe zempora] mixing layer results, Fig.

5 shows the accuracy of the Monte Carlo solve: and thc

ia._n_fivity of results m A£ for the first moment of the FDF.

Similarly, for the scalar variance, lhe adpeement between the

FDF and I..F_FD nmtlts diminishes as the size of AE is

decreased. At x=SD, the FDF results with AE=A are very

close to those via LES-FD. With the saroc Af values the

agreement is not _ good at x=9D and lower values of AE

are needed m achieve a better a_'cemcm for the subgrid

variance. However, as will be shown below, with this reso-
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lution the mean filtered values of reacting scabus arc pre-
dicted reasonably well.

The consistency of the FDF simulation in 3D is demon-

strated in Fig. 7 in which the scalzcr plot is shown of the
insumumeous filtered A values as obtained by FDF vs. throe
via LF_-FD. The hydrodynamic LES is based on MKEV in
both simulations. The conelation coefficient between the

data obtainedby the two simtda_onsis 0.99. This exccgent
correlation is also reflected in the cross scream profiles of the
Reynolds-averaged filtered quantifies in Fig. 8.

D. DNS validations of the FDF

The objective in this section is to assess the overall per-

formancc of the FDF and to appraise the validity of the sub-

models employed in the FDF transport e.qua=ion. For this

objective, the FDF results are compared against DNS of the

same flow configuration with the same magmmdes of Re and

Da. For a meaningful comparison, the DNS data sac filtered

and thc results on the coarse grids arc compared with those

on the corresponding coarse grids in the FDF simulations. To

illustrate the capability of the FDF, the results are also com-

pared with LES-FD in which the effects of SGS fluctuabons

on the filtered reaction rate are ignored.
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Firsttheresolutionre_t forDNS isdeun-mined.
Tl_s is d_monsm_l ben:forthe2D mixinglayer.A similar

procedureisfollowedfortheotherflowconfigurations.In
Fig. 9 msWtsan: presentedof the temporal evolution of the
vorticity thickness(_,,) andthe mud product(,_e) m a react-
ing layer with Re=500, Da=2 at several resolutions.It is
shown that the msdts _ via 289x385 =n0almost
identical to thoseon433x 577 grid points. Analysisof other
statistical results(not shown)show a similar behavior..H=re-

mafter 433X577 gridpoints are usedin all DNS of the 2D
mixing layer. The resolution employed in I..ES (both FDF
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and LES-FD) is coarser consisting of 37x49 grid points.

The results m Fig. 9 indicate the inaccuracy of "DNS" at
this resoluuon.

To dcmrmmc the magnitude of Cn, in Fig. I0 the int=-

grat...._ Reynolds averaged values of the SGS variance

(fo'A(yJ)dy) of a nonreaming =caLm" as predicted by FDF

are compared with those via DNS. T1_s comparison shows

that C n-- 3 yields a reasonable agreement between the pre-

diction and DNS results. Thus, this value is used in absence

of a better model of the subgrid mixing frequency.

To demonswate the difficulty of modeling the SGS scalar

fluctuations in reacting flows, the Reynolds averaged profiles

for the "'SGS unmixedness" (/-am = (AB)L- (A)L(B)D and

its "Reynolds" =u_m _a_ RAm= (A 'B')L-- (.4')L(B')L =
obtained direa:dy from DNS data arc shown in Fig. 1 I. These

results show the importance (non-z¢_ values) of these cor-

relations. They also show that Rm) is a fraction of TAm sug-

gesting that modeling of _'Am in LES is more complex than

that in Reynolds procedures.

I. Fig. 12, the FDF predictions of the total product are

compared with DNS results. The Smagorinsky model is em-

ployed in FDF with several values of the parameter C,. Ob-

vious]y for a constant C, value, the agrecmemt between DNS

and FDF is not very satisfactory. The subgrid viscosity based
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on the Smagonnsky clostu'caffects both the resolved hydro-

dynamic fieldand the subgrid scalar mixing process. It is

known that the Smagorinsky closure somcUmes generates

excessive damping m the resolved scales m wansidonal

regions.49 _ an mmmpt is made to rectifythe simauon,

albeit in a very ad hoc manner. In the temporal mixing later,

C, should be miually zero to reflect the fact that the flow is

"'laminar.'" Then its value should increase m lime as the

flow becomes morn "turbulcnL'" The FDF results in Fig. 12

with C,=t agree more favorably with DNS. This is partly

due to better lmuficdons of the hydrodynamic field (Fig. 13)

but also due to more accurate rcFrcscntation of the subl_d

mixing frequency. This better agreement is not sufficient m

suggest a new model for C: ; rather it is to dcmonsu'ate the

importance of the subgrid diffusion m affectingthe FDF di-

rectly (through the subgrid mixing) and mdixccdy (through

the input of the hydrodynamic parameters).

In order to better predict the subgrid viscosity, the

MKEV model (Eq. (lI)) is adopted. In Fig. 13 itis shown

that the vonicity thickness predicted by the MKEV model

compares with DNS data better than that via the Smagorin-

sky model. The improved prediction of the eddy viscosity

also improves the FDF predicted product formahon as shown

m Fig. 14 for several values of the Damk6b.lcr number. Due

to the demonswated superiority, the MKEV closure is uti-

lized in all subsequent simulations unless otherwise noted.

3.0

2.0

1.0

°°oo 20.o soo

..... G*"n'Dt 1

.... G,,,.0,014 /

-.- =...=.= ! /

i"- ................

.0 40.0
t

FIG. 12. 2D maxmg layer ssmulauon tin-ks: Tot_ product vm_mJon w1_
umc The Smagonnsky model is usedto represent the eddy vssoossty for IJ_
FDF ssmulauons

FIG. 14. 2D rm=mg layer sunulauon rcsu/ts: Tcmpor_/cvotuUon of th_ to_
pTOdt/Ct.



510 Phys. Fluids, VoL 10. No. 2, Fe0n_iry 1998 Co_uc_ et 41/.

(--'_)L

(a)

(b)

6.0
I fcP,--o _,_s. o..o._s
/ i°'-'G o,4. _,.o., ;"
i' to--,-_oNs.o.._-
j/o - ,._o.o.-_*-, ,"
|lO - • I.lS-FO. 0_o,1 •

4.0 i i. - _ u_s-_-'o,o,,-z
._[ I

6p

&" " ° .I "

I ,

0"-0.0 10.0 20.0 30.0 40.0

t

20.0

50.0

FIG. 15. 2D mUc_ I lm_"r smmb_on _ldu: (a) C,-ms-m'_m vlmazioa o(

lpmduct dismbm.ion. (b) Tempo_ evolum,'m of Ibe mud lxn0,duc¢

(a)

-0.22 -0. _J. 0.00

F[G. 17. :ZD pbmx jel -_,l--on m_lts: Como_ of tl_ nomadm_ al -

sumumeo,,, iUblp_ ._,..,h_.. (a) DNS. CO) FDF.

Ca)

0.00 0.025 0.050

1.0

0.8 ,_"

0.6

A

0.4

0.2

0.0

(b)

0.00 0.025 0.050

(a)

A

It))

0.0 0.2 0.4 0.6 O.B 1.0

<A) L

1.0

-

o.0 -:':: :':.:,;.,

0.6 " " ' ";::', :':: -.

o,
:.. - ._;_: .- ,"

02 , :.._,.;,_ ;=:.., "-
j-,;,.- t, -;'.'.':-4.':" "'"

0.0 0.2 0.4 0.6 0.8 1.0

<A>_.

RG. 16 2D nu]unll layer s_muLcuoo results: Scal_r plots of msumumeous

value of the conserved scalar vs. the nrmm value. Dma udccn h_0m (a) DNS,
(b) F'DF throughout the compul,auor_l doma,m,

FIG. 18 2.D plaom" ]ct _umu.l.a._on rlcsu.lL_: InsUmUmcOUS rc_co0_ nll¢ ILl

d.¢tcn'mne.d by Ira) DNS, (b) FDF, (c) LES-FD



0.S0

0.40

0.30

0.0

(a) y

(b)

[--- LE_I r
-- . '_ /

L ,If
• t I

1.0 2.0

0.20

0.10

0.00
-2.0 -1.0

0.50

t \ I X

0.30 / _ /

f 'A ' , ,A,

°'2°i ;1
0.10 / '_.

-2.0 -1.0 0.0 1.0

Y

2.0

FIG. 19. 2I) plimIr jet s_:uLmoa hindu: Cn_-_n_m vwimce of the
mean pnxi-a mass folio= m (a) x-SD and (b) x=9D.

To demonswate the imporumce of the SGS scalar fluc-

mauons, the n:sudts of FDF and _-FD are compared with

DNS results m Fig. IS. This figure shows that the neglect or"

SGS unmixedn©ss results in significantovcrpredicdons of

the product mass fraction. This behavior is observed a_ all

runes and all values of the DamkShlcr number (Fig. 15(b))

and is consistent with that in Reynolds averaging. Is More-

over, Fig. 15(b) shows that as the magn/mde of the

DamkShlcr number m_, the neglect of the SGS unmix-

exincss in LES-FD results in progressively higher deviauon

of product formation relaLive to DNS. This is significant

since the Da values in lnl.-'dcal reacdng sysmns can be quite
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FIG. 21. 3D _I _ Ion msulu: Cnoss-_ureamvmrumonof the
prochu= dismbunoL

large. Therefore k is expected that the effects of the SGS

unmixedness are very pronounced in such applicaaons. To

v_ify that the enhanced product fornmion m LES-FD is not

_s_ _th k oi_ __on czrors, an addi-

uonal FDF is coaducm/in which the filmed reaction hue is

"'incorrectly" csJcu]_ in terms'of the filu:red values of the

rcacUmts' mass fractions. The res-lts based on this model arc

idendfind by FDF" in HS. 15(a) and consistcm with LES-F'D

results, _a _ nu_ of reac_uts' convasiorL

k is useful to compare d_c DNS results fix "fine _/d"

scalar values with the "fine-grained" vaJues associated with

the Mon_ Carlo panicles. The "'scarier" plots of the insum-

umeous fine gr/d values of A vs. its 6l_n_d value (A)L as

obtained by DNS arc presented in Fig. 16(a) and the scarier

plot of fine grained A values vs. {A)L is shown in Fig. 16(b).

These results xre associated with a non-reacung temporal

m/xing layer and are ud_-n at a fixed umc. The points in Fig.

16(a) correspond m the values at all the grid points employed

in DNS within the computanon domain. The points in Fig.

16(b) _d to all Monte Carlo panicles occupying the

same domain. It is shown that the "density" of sca_m- is

sire/far in the two plots indicabng a qual/-,tive agrecrnent

between FDF and DNS. However, the scan_ in FDF is ex-

pcclcdly somewha_ greater but not with a significant density.
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TABLEI. Totalcomputmomd tunesfortlm213rr,acm_ m_,mglayerstmu-
[atlofts.

Stmu|auon Gnd resoluuon _ NormadizedCPUmac* R|ur¢

DNS 433X5T7 -- 285.45 14. 15(b)
FDF 37x 49 40 8.45 14

L,ES-FD 37X49 _ l lSPo)

"UmlcorrespondstoIIso_• Cmy-CgO.

TABLE 111 Total cemlmumomd_mes for _be 3D re.acun&xmx_n&layer
smmuJa_oas.

Sinm/m_ou _ n_oiuuoa _ NormaLizedCPU ume' Fi_

DNS 217x299x 133 182.71 21,

FDF 55x'/3x 34 20 7.64 21.
LES-FD 55x'73x 34 I 21.22

"Umlconespondm 655 son• Cmy-Cg0.

The effccuveness of the FDF to predict the slighdy more

complex jet flow is summarized in Figs. 17-20. Figure 17
shows theinstantaneouscontoursofthenormalizedSGS un-

mixedness as obtained by filteredDNS and FDF. Nora that

thisterm isassumed tobe idenucallyzeroinLES-FD. The

SGS unmixcdness isnegativethroughout_c macuon zone,

thus itseffectismanifestedina decreaseof the filmmd re-

setionram. This isreadilyobserved m Fig. 18, where the

contourplotsof the reactionrates_n: displayedfortim 61-

DNS, FDF and LES-FD approaches.While the

valuesm theDNS are slighdyhigherthanthoseobservedin

the FDF simulations, the reaction zone predicted by the FDF

simul_ion is slighdy thicker (due m the finite size of the
ensemble domain) therefore yielding a comparable mount

of convened products. In conmmt, the filtered reaction ra=s
obtained by the fimte difference _ procedure in which the

SGS unmixedness is ncglecmd are significandy higher. This

is reflected in Fig. 19, where the cross-stream variation ofthc

me-averaged filteredvalues of the product mass fraction are

l_sc_md attwo downsu'eam locationsand inFig.20, wbe_
the streamwise variation of the intcgramd mud Imxluct

(6e(x)=f(P)t.(z,y)dy) is shown. Two additionalpoints

are mmndexl by presentationsof Figs.19 and 20. F'_rsLthe

FDF resultsa_ compatible with thoseofDNS atIlldown-

sn-cam coordinates.Therefore,thereisno "secular'"behav-

iorassociatedwith possiblemodeling re'onintheFDF. Sec-

ond, the differences between the FDF and DNS in predicting

the subgridscalarvariancesatlargezlD valuesas observed

in the varianceresultsinFig.6 do not seem m yieldsignifi-

cant differencesin the amount of productformationasprc-

dicmd by the FDF. In allthe casesthe neglectof the SGS

fluctuations,as done in LES-FD, resultsm significantover-

predictionsof the _tered reactantconversionram. Itisex-

pccmd thattheseoverpredictionswould become even more

significanta_higherDamk6hlcr and Reynolds numbers.

The major conclusionsdrawn from the 2D resultsare

conRrmcd in 3D simulations.The cross-slreamvariationof

the filteredmean producl.sand the mmporal variationof the

totalproductin _ 3D mixing layerare shown in Figs.21

and 22. The performances of the Smagonnsk'y and MKEV

TABLE 11 Tood cornpuumonal tunes for the reac_g jet s'_mu/auoQs.

Scmulauon Grid resoiuuon NPG N_ CPU tu_' Fiptre

DNS 72l x361 -- 52.12 IS(a)

FDF 18l x9l 20 12_56 IS(b)

LES-FD 181 x9[ _ ! IS(c)

'Urtl!cort_sponcl.s tO 809 s on a Cray-C90,

closures in predicting the hydrodynamic field are similar to
those in 2D. With either closures, the amount of products

predicted by LES-FD is higher than those obtained by FDF

and DNS. The FDF results are asmn in a good agreement

with DNS data. This agreement also indicates that the mix-

ing model with Cn = 3 works well in 3D simulations:no

anempt was made m find the optimize value of this consumt.

Fum_ applicationsto otherflow configur_ons would deter-

mine the generality of the modeL

E. Comparison of computafiorml requirements

The total computational times mocinmd with some of

the simulations me shown in Tables I-III. The cases consid-

ered in this table axe those which give reasonablyaccura_

predictions of the first FDF moments of the reacting smLhtr

field. Expecmdly, tim _ associated with th= FDF
simulation is somewhat _ve as compared to LES-FD;

nevertheless the FDF's comput_onal requirement is signifi-

candy less tbat of DNS. While thisoverhead was mlcramd m

presentsimulstions,thereareseveral means of reducing it

for furore applic_rlons. A deudlede,xaminauon of the indi-

vidualrouunes utilized in the FDF simulations indicates that

themost demanding computauon is associated with the par-

ucle interpolation procedure. The fourth order interpolation
routine consumes about 51.3% of theWud CPU Ume. The

bilinear scheme :educes the computational m'ne by 36%. If

inm'pola_ioncan be mudly disregarded,i.e., using the results
at the nearest finite difference grid point as shown in Fig. 4,

the CPU _me can be decre_ed by 50%. In addition,

Lagrangian procedure would benefit from the utilization of

pandlel architecture, since a significant portionof the time is

devoted to computations in large loops dimensioned by the

total number of Monte Carlo particles. This has been dis-

cussed for use in PDF (Ref. 86) and its utilization is recom-
mended for FDF.

In comparing the computmional requirements of FDF

with those of DNS, it is imporumt to note that this compari-

son could be made only in flows for which DNS was pos-
sible. The DNS umes and the FDF times are as close as they

are simply because the DNS had to be done at low Re, Da

values. At higher values of these pnrarneters,the difl'er_ce

could be much greater. This warrants further extensions and

applications of FDF for more complex turbulent reacting

flows for which DNS is not possible.



VII. CONCLUDING REMARKS

It is demonstrated that the filtered density function

(FDF) provides a powerful method for large eddy simulation

(LES) of turbulent reacting fows. The method is based on

the representationof thedistributionofthe unresolvedfluc-

tuationsat thesubgridlevel.This issimilartotheprobability

densityfunction(PDF) methods inReynolds averagingpro-

cedures.Here,theFDF methodology isdevelopedfortreat-

ment of scalarvariables.Thus, similarto PDF methods it

representstheeffectsofchemical reactionsina closedform.

A modeled transportequationisdevelopedfortheFDF

by adoptinga closuresumegy similartothatinPDF meth-

ods. Itisshown thatthe Lagrangian Monte Carlo scheme

provides an effecuvemeans of solvingthe FDF translx_

equation.The scheme isexploitedforI..ESoftwo-and tlm_-

dimensionalshearflowsunder both nonreactingand reacting

conditions.The smaulaw.dresultsare compared with those
based on conventional_ methods inwhich theeffectsof

subgridscalarfluctuationsare ignored(L.ES-FD),and those

via directnumericalsimulation(DNS) of flowswith identi-

cal valuesof the physicalparameters.The convergence of

the Monte Carlonumericalresultsand theconsistencyofthe

FDF formulationare demonstraw,d by comparisonswith the

EulerianresultsofLES-FD ofnon-reactingflows.The supe-

nonty of theFDF overLES-FD isdemonstratedby detailed

comparativeassessmentswith DNS resultsof reactingshear

flows.Itshown thatthesubgridscalescalarfluctuationshave

a very significantinfluenceon the filteredreactionram; the

neglectofthesefluctuationsresultsinovcrprcdictionsof the

filmredreactantconversionram.

Although the presentmethodology isdeveloped foriso-

thermal,constantdensity,reactingflowswith a simplekinet-

icsscheme, theextensiontovariabledensityflows,with exo-

thermic reactions imposes no serious mathematical

difficulties.With such an extension,itis conceivablethat

LES ofreactiveflowswith realisticchemicalkineticsmay be

conducted forengineeringapplicationsin thenear futm'e,if

the computationaloverhead associatedwith theFDF can be

tolerated.In thisregard,the scalarFDF methodology isat-

tractivem thatthepresentMonte Carlo solvercan be used

directlyinavailableCFD codes.SimilartoPDF methods,the

closureproblems associatedwith tlm FDF are the correla-

Lionsinvolvingthevelocityfield(suchas SGS stressesand

mass fluxes).This may be ovemome by consideringthejoint
velocity-scalarFDF similartothatm PDF. s7

The computationalrequirement forFDF ismore than

thatfor LES-FD and lessthan thatforDNS. The range of

flow parameters (such as the Reynolds and the Damk6hler

numbers) that can be considered by FDF is significantly
larger than can be u'eamd by DNS, and the results are more

accuratethatthoseby LF_.S-FD.This comparisonof compu-

tationalrequirementscould be made here only in flowsfor

which DNS was possible,i.e.,low Da, Re values.At higher

valuesoftheseparameters,thecomputationalcostassociated

with DNS would be exceedinglyhigherthan thatof FDF.

Thus forpracticalflowsforwhich DNS iscurrentlyimpos-
sible,F'DF would bc a good alternative.Severalmeans of

reducingthe FDF's computationalrequn',_ncntsare recom-

mcnded. Thesecouldbe usefulm futureapplicauonsincom-

plex flows.The FDF methodology willbenefitfrom ongoing

and futm'eimprovementsin PDF schemes from bothmodel-

ing and computationalstandpomts,ss
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Abstract

A methodology termed the "filtered mass density function" (FMDF) is developed

and implemented for large eddy simulation (LES) of variable density chemically react-

ing turbulent flows at low Mach numbers. This methodology is based on the extension

of the "filtered density function" (FDF) scheme recently proposed by Colucci et al.

(1998) for LES of constant density reacting flows. The FMDF represents the joint

probability density function of the subgrid scale (SGS) scalar quantities and is ob-

tained by solution of its modeled transport equation. In this equation, the effect of

chemical reactions appears in a closed form and the influences of SGS mixing and

convection are modeled. The stochastic differential equations (SDEs) which yield sta-

tistically equivalent results to that of the FMDF transport equation are derived and

are solved via a Lagrangian Monte Carlo scheme. The consistency, convergence, and

accuracy of the FMDF and the Monte Carlo solution of its equivalent SDEs are as-

sessed. In non-reacting flows, it is shown that the filtered results via the FMDF agree
well with those obtained by the "conventional" LES in which the finite difference solu-

tion of the transport equations of these filtered quantities are obtained. The advantage

of the FMDF is demonstrated in LES of reacting shear flows with nonpremixed reac-

tants. The FMDF results are appraised by comparisons with data generated by direct

numerical simulation (DNS) and with experimental measurements. In the absence of

a closure for the SGS scalar correlations, the results based on the conventional LES

are significantly different from those obtained by DNS. The FMDF results show a

closer agreement with DNS. These results also agree favorably with laboratory data of

exothermic reacting turbulent shear flows, and portray several of the features observed

experimentally.



1 Introduction

Within the past decade, large eddy simulation (LES) of turbulent reacting flows has been

the subject of widespread investigations (McMurtry et al., 1992; Menon et aL, 1993; Gao

and O'Brien, 1993; Madnia and Girl, 1993; Frankel et al., 1993; Cook and Riley, 1994;

Fureby and Lofstrom, 1994; MSller et aL, 1996; Branley and Jones, 1997; Cook et aL, 1997a;

Cook et aL, 1997b; Jim_nez et al., 1997; Mathey and Chollet, 1997; Colucci et al., 1998;

DesJardin and Frankel, 1998; Jaberi and James, 1998; R_veiUon and Vervisch, 1998); see

Galperin and Orszag (1993); McMurtry et al. (1993); Libby and Williams (1994); Fox (1996);

Vervisch and Poinsot (1988) for reviews. Amongst these, Colucci et al. (1998) recently

developed a methodology, termed the "filtered density function" (FDF) based on an idea

originally proposed by Pope (1990). The fundamental property of the FDF is to account for

the effects of subgrid scale (SGS) scalar fluctuations in a probabilistic manner. Colucci et

al. (1998) developed a transport equation for the FDF in constant density flows in which

the effects of unresolved convection and subgrid mixing are modeled similarly to those in

"conventional" LES, and Reynolds averaging procedures. This transport equation was solved

numerically by a Lagrangian Monte Carlo procedure and the results were compared with

those obtained by direct numerical simulation (DNS) and by a conventional finite difference

LES in which the effects of SGS scalar fluctuations are ignored (LES-FD). It was shown that

in non-reacting flows, the first two SGS moments of the FDF as obtained by the Monte Carlo

solution are close to those obtained by LES-FD. The advantage of the FDF was demonstrated

in reacting flows in which its results were shown to deviate significantly from those obtained

by LES-FD but compare favorably with DNS data.

The encouraging results generated by FDF warrant its extension and application to more

complex flows. Further assessment of its predictive capability is also in order. The primary

objective in this work is to extend the FDF methodology for treatment of variable density re-

acting flows so that exothermic chemical reactions can be simulated. For that, we introduce

the "filtered mass density function" (FMDF). With the definition of the FMDF, the math-

ematical framework for its implementation in LES of reacting flows is established. A new

computational scheme is also developed for the solution of the FMDF transport equation.

The results obtained by FMDF are scrutinized by comparisons with DNS and laboratory

data in several turbulent reacting flows with nonpremixed reactants. The FMDF deMs only

2



with scalar quantities; the hydrodynamic field is obtained via conventional LES. Also, the

formulation is based on the assumption of low Mach number. This allows consideration of

exothermicity and variable density effects, but the method cannot be used for LES of very

high speed flows (Drummond, 1991).

2 Governing Equations

In a compressible flow undergoing chemical reaction, the primary transport variables are the

density p, the velocity vector ui, i = 1, 2, 3 along the xi direction, the total specific enthalpy

h, the pressure p, and the species mass fractions Y= (a = 1, 2,..., Arm). The con_rvation

equations governing these variables are the continuity, momentum, enthalpy (energy) and

species mass fraction equations, along with an equation of state (Williams, 1985)

Op apul

_+ _ -0 (1)

Opuj cgpuiu I Op cgrii

o--F+ ox, - axj + (2)

__ -.-.

O"'--_+ Ox_ Ox_ + pSa, a = 1,2,...,a Arm+ 1 (3)

N,

p = pR°T _ = pT_T (4)

with

h,_ = h ° + %°(T')dT' (6)

where T denotes the temperature, To is the reference temperature and h ° and %° denote

the enthalpy at To, and the specific heat of species a at constant pressure, respectively. At

low Mach numbers and heat release rates, by neglecting the viscous dissipation and thermM

where t represents time, R ° is the universal gas constant and A4o denotes the molecular

weight of species a. Equation (4) effectively defines the mixture gas constant T_. Equation

(3) represents the transport of the species' mass fractions and enthalpy in a common form

with
No

¢o - Y,_, _= l,2,...,N,, ¢_--h=_-'_h_,¢= (5)



!D_Et 1_
radiation the source terms in the enthalpy equation S_ = p Dt _ ; at can be assumed to

be negligible. Thus, the chemical source terms (S,, = S_(_b),_b = [_,Y2,...,YN,,h]) are

functions of the composition variables (¢). For a Newtonian fluid with zero bulk viscosity

and Fickian diffusion, the viscous stress tensor rij, mass and heat flux (J_, a -- 1,2,..., a)

are given by

[Ou_ Ouj 20uk
_"J= _' \ Ozj + Ox, 3 F-_zk,5_jj, (7)

where/_ is the dynamic viscosity and 3, = pF denotes the thermal and the mass molecular

diffusivity coefficients. Both/_ and "t are assumed constant and the Lewis number is assumed

to be unity. In reactive flows, molecular processes are much more complicated than portrayed

by Eq. (8). But since the molecular diffusion is typically less important than the SGS

diffusion (to be defined below), this simple model is adopted with justifications and caveats

given by Pope (1985); Silger (1982).

Large eddy simulation involves the use of the spatial filtering operation (Aldama, 1990)

OO<f(x, t)>t = f(x',t)g(x',x)dx' (9)

where G denotes the filter function of width Aa, (f(x,t))t represents the filtered value

of the transport variable f(x, t), and f' = f - (f)t denotes the fluctuations of f from the

filtered value. In variable density flows it is convenient to consider the Favre filtered quantity

(f(x, t))L =(Pf)t/(P)t and the fluctuation f" = f-(f)L. We consider spatially & temporally

invariant and localized filter functions, _(x',x) = G(x'-x) with the properties (Aldama,

1990), G(x) = G(-x), and f¢_ G(x)dx = 1. Moreover, we only consider "positive" filter

functions as defined by Vreman et al. (1994) for which all the moments fY_ z_G(z)dz exist

for rn > 0. The application of the filtering operation to the transport equations yields

a(p>, o<p)_<,,,>L
O---i-+ Oz, - o (10)

a<p>_(_,j),, O<P)_<,,,>L(,,j>L a<p)_+ oO-,A_ OT_j
at + Oz, = cgzj Oz_ Ozi (11)



Ot + Oxi = Oxi Ox_ + (pSi)t, a = 1,2,...,a (12)

where Tij = (p)t((uiuj)L -- (Ui)L(Uj)L) and M_' = (p)t((ui¢=)r. - (u,)_.(¢o)/,) denote the

subgrid stress and the subgrid mass flux, respectively. The filtered reaction source terms are

denoted by (pSa)t = (p)t(Sa)r. (a = 1,2,...,N,).

Modeling of Hydrodynamic SGS Quantities

In LES of non-reacting flows the closure problem is associated with Tii and M/" (Erlebacher

et al., 1992; Salvetti and Banerjee, 1995). In reacting flows, an additional model is required

for the filtered reaction rate (S_)L. This is the subject of the probability formulation as

described in the next section. For Tq, the variable density form of the model used in our

previous work (Colucci et al., 1998) is considered:

Tij = -2Ca(p)tAaE*/2 ((Sii)L 1 2 (13)

where (,-'¢q)L is the resolved strain rate tensor, _: = I(U_)L(U_)L -- ((u_)n)t,((u_)n)e], u 7 =

u; - Hi and H; is a reference velocity in the x_ direction. The subscript t' denotes the filter

at the secondary level of size AG, > Aa. This model is essentially a modified version of that

proposed by Bardina et al. (1983), which utilize equal sizes for the grid and secondary filters.

We refer to this as the modified kinetic energy viscosity (MKEV) closure. Accordingly, the

subgrid eddy viscosity is expressed as vt = CRATE½. A similar diffusivity model is used for

the closure of the subgrid mass flux (Eidson, 1985)

O(¢o)L (14)M:=-7, oz----T-

where 7, = (p)tF,, F, = vt/Sct, and Sct is the subgrid Schmidt number, assumed to be

constant and equal to the subgrid Prandtl number. It must be emphasized here that these

models are not used directly in the FMDF but the modeled FMDF transport equation is

constructed to be consistent with them as discussed below.



3 The Filtered Mass Density Function (FMDF)

Let _b(x, t) denote the scalar array. We define the "filtered mass density function" (FMDF),

denoted by Fz,, as

Ft(e;x,t) = j¢'_ p(x', t)¢ [e, ¢(x',t)] (7(x'- x)dx', (15)

[¢, ¢(x,t)] = 5['¢ - ¢(x, t)] -- 1"I 5[¢,_ - ¢=(x, t)] (16)
a----I

where 5 denotes the delta function and _b denotes the composition domain of the scalar array.

The term ¢[¢, ¢(x, t)] is the "fine-grained" density (O'Brien, 1980; Pope, 1985), and Eq.

(15) implies that the FMDF is the mass weighted spatially filtered value of the fine-grained

density. The integral property of the FMDF is such that

Foo &(,_;x,t)d¢ = p(x',t)G(x'-x)ax' = (p(x,t))t. (17)

For further developments, the mass weighted conditional filtered mean of the variable Q(x, t)

is defined as

91--00

f"oo p(x', t)Q(x', t)¢ [Xb,¢(_d, t)] G(x' - x)dx'

(Q(x' t)l¢)t = FL(¢; x, t) (18)

Equation (18) implies

(i) For Q(x,t) = c, (Q(x, t)l¢), = c (19)

(ii) For Q(x,t) = Q(d)(x,t)), (Q(x,t)l¢), = 0(¢) (20)

j,_oo(iii) Integral property" oo(Q(x't)l¢)tFL(tb;x't)dd2

= (p(x,t))t(Q(x,t))L (21)

where c is a constant, and Q(_(x, t)) _ Q(x, t) denotes the case where the variable Q can

be completely described by the compositional variable ¢(x, t) = [¢,, Cu,..., ¢,,]. From these

properties, it follows that the filtered value of any function of the scalar variables (such as

p = k[q,(x,t)] and & = _o[_(x,t)] ) is obtained by integration over the composition space.

It is noted that the mass weighted conditional filtered mean reduces to the conditional filtered
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mean (Colucci et al., 1998) when the density can be completely expressed in terms of the

compositional variables.

By applying the method developed by Lundgren (1969); Pope (1976); O'Brien (1980) to Eq.

(3), a transport equation is obtained for the fine-grained density (Colucci et al., 1998). The

transport equation for FL(_b; x, t) is obtained by multiplying the equation for the fine grained

density by the filter function G(x' - x) and integrating over x _ space. The final result after

some algebraic manipulation is

ot + o_:, - 0¢o _(¢) 0x, I,/, fLC¢;x,t)
l

015o(_b) FL (_b; x,t)] (22)
0¢o

This is an exact transport equation for the FMDF. The last term on the right hand-side

of this equation is due to chemical reaction and is in a closed form. The unclosed nature

of SGS convection and mixing is indicated by the conditional filtered values. These terms

are modeled in a manner consistent with Reynolds averaging and conventional LES in non-

reacting flows. The convection term is decomposed via

<u,l_bFL = (U_)LFL+ [(u_l¢)_- (_)L]FL. (23)

where the second term on the right hand side denotes the influence of SGS convective flux.

This term is modeled as

[<_I¢>,-(",)L]FL= -_,
O(FL/<p),)

(_x i
(24)

The advantage of the decomposition (Eq. (23)) and the subsequent model (Eq. (24)) is that

they yield results similar to that in conventional LES (Germano, 1992; Salvetti and Banerjee,

1995). The first Favre moments corresponding to Eqs. (23) and (24) are

<U_¢°>L= (_',>L(¢o)L+ [<_,¢o)L- <u,>L<¢.)L],

(P),[(_'_¢.)L-- (_'_),.(¢°)L]= -'y,
a(¢o)L

(25)

(26)
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The term within brackets in Eq. (25) is the generalized scalar flux. This makes Eq. (26)

identical to Eq. (14). The closure adopted for the SGS mixing is based on the linear mean

square estimation (LMSE) model (O'Brien, 1980; Dopazo and O'Brien, 1976), also known

as the IEM (interaction by exchange with the mean) (Borghi, 1988)

a_,. _o_, \ -8-Z,]t_' EL = _ "r 0_, ) +_-:[N.,(¢o-(_o),.)F,.], (27)
t

where fl,_(x, t) is the "frequency of mixing within the subgrid" which is not known a priori.

This frequency is modeled as 12,,_ = Ca(')' + 7t)/((p)tA_). For the first term on the right

hand side of Eq. (27) an additional minor assumption is made:

0 0 (ocF,/<.>,)I
o_----:k o_, ] = _ k a,, ]

(28)

This assumption is not necessary for the treatment of FMDF and is only adopted to establish

consistency between the FMDF and the conventional LES. With these approximations, the

modeled FMDF transport equation is

OFL O[(u,)LFL] O [ i)(FL/(p),)] O [n._(¢o- (¢_)L)FL] a[S..Fz.] (29)0--7-+ a_, -b-_, (_+_') _ J+b-_ a¢_

This equation may be integrated to obtain transport equations for the SGS moments. The

equations for the first subgrid Favre moment, (¢_)L, and the generalized subgrid variance,

(¢_o_)L <¢_ol)_aredr ° --- u

a((p),(¢_>L) a((p),(,,)L(¢o>,.) a ( ,a<¢o)L] (30)

+
c9¢ cgz _ a_, _(_ + _')-8_ j + 2(_+ _,) o_, o_

(31)

where the subscripts in parenthesis are excluded from the summation convention. These

equations are identical to those which can be derived by filtering Eq. (3) directly, and em-

ploying consistent closures for the subgrid flux and the dissipation. In such direct moment



closureformulation, however,the terms involving (S_)L remain unclosed.

4 Monte Carlo Solution of the FMDF

The Lagrangian Monte Carlo procedure (Pope, 1985) is employed for the solution of Eel. (29).

In this procedure, each of the Monte Carlo elements (particles) obeys certain equations which

govern their transport. These particles undergo motion in physical space by convection due

to the filtered mean flow velocity and diffusion due to molecular and subgrid diffusivities.

The compositional values of each particles are changed due to mixing and reaction. The

spatial transport of the FMDF is represented by the general diffusion process governed by

the stochastic differential equation (SDE) (Risken, 1989; Gardiner, 1990)

ax,(t) = O,(X(t),t)dt + E(X(t),t)dW,(t) (32)

where Xi is the Lagrangian position of a stochastic particle, Di and E are the "drift" and

"diffusion" coefficients, respectively, and Wi denotes the Wiener process (Karlin and Taylor,

1981). The drift and diffusion coefficients are obtained by comparing the Fokker-Plank

equation corresponding to Eq. (32) with the spatial derivative terms in the FMDF transport

equation (Eq. (29)),

E = ¢2(3' + 7t)l(P)t, 1 8(7 + _ft) (33)

The subgrid mixing and reaction terms are implemented by altering the compositional

makeup of the particles

dt

where ¢+ = ¢,,(X(t), t) denotes the scalar value of the particle with the Lagrangian position

vector X,. The solutions of Eqs. (32) and (34) yield the same statistics as those obtained di-

rectly from the solution of FMDF transport equation according to the principle of equivalent

systems (Pope, 1985; Pope, 1994).



Numerical Solution Procedure

A new computational algorithm is developed for the solution of the FMDF. While the al-

gorithm is similar to that used in PDF methods (Pope, 1985), it is not exactly the same.

Therefore, a detailed description is provided.

The complete numerical solution of the equations governing the resolved field is based on

a hybrid scheme in which the hydrodynamic Favre filtered equations (Eqs. (10)-(11)) are

integrated by a finite difference method and the filtered scalar field is simulated by the Monte

Carlo solution of the FMDF transport equation. The LES of the hydrodynamic variables,

which also determines the subgrid viscosity and scalar diffusion coefficients, is conducted with

the "compact parameter" scheme of Carpenter (1990). This scheme is based on a hyperbolic

solver which considers a fully compressible flow. Here, the simulations are conducted at a

low Mach number to minimize compressibility effects. AU the finite difference operations

are conducted on a fixed and uniform grid. Thus, the filtered values of the hydrodynamic

variables are determined on these grid points. The transfer of information from these points

to the location of the Monte Carlo particles (described below) is conducted via interpolation.

Both fourth-order and second-order (bilinear) interpolations schemes were considered, but

no significant differences in filtered quantities were observed. The results presented below

utilize fourth- and second-order interpolation for two-dimensional (2D) and 3D simulations,

respectively.

The FMDF is represented by an ensemble of Monte Carlo particles, each with a set of scalars

¢(o"}(t) = ¢o(X(")(t), t) and Lagrangian position vector X("). A splitting operation is em-

ployed in which transport in the physical and compositional domains are treated separately.

The simplest means of simulating Eq. (32) is via the Euler-Maruyamma approximation (Kloe-

den and Platen, 1995): X!")(tk+a) = X_'_)(tk)+ D!")(tk)At + E(")(tk)(At)l/2_")(tk), where

At = t_+l -- tk is the computational time increment between two consecutive discretized time

levels, D!")(t) = D,(X('_}(t),t), E(n)(t) = E(X(_)(t),t) and _")is a random variable with the

standard Gaussian PDF. The coefficients Di and E require the input of the filtered mean

velocity and the diffusivity (molecular and subgrid). These are provided by finite difference

solution of Eqs. (10)-(11).

The compositional values are subject to change due to SGS mixing and chemical reaction.
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Equation (34) may be integrated numerically to simulate these effectssimultaneously. Al-

ternately, this equation is treated in a split manner. This provides an analytical expression

for the subgrid mixing. Subsequently,the influenceof chemical reaction is determined by

evaluating the fine grained reaction rates S(_'0 = 5"_(_b (")) and modifying the composition.

The mixing model requires the Favre filtered scalar values. These and other higher moments

of the FMDF at a given point are estimated by consideration of particles within a volume

centered at the point of interest. Effectively, this finite volume constitutes an "ensemble

domain" characterized by the length scale AE (not to be confused with Aa) in which the

FMDF is discretely represented. A box of size AE is used to construct the statistics at the

finite difference nodes. These are then interpolated to the particle positions. Since the SGS

mixing model only requires the input of the filtered scalar values, and not their deriwtive,

this volume averaging is sufficient. From a numerical standpoint, specification of the size of

the ensemble domain is an important issue. Ideally, it is desired to obtain the statistics from

the Monte Carlo solution when the size of sample domain is infinitely small (AE _ 0) and

the number of particles within this domain is infinitely large. With a finite number of parti-

cles, if AE is small there may not be enough particles to construct reliable statistics. A larger

ensemble domain decreases the statistical error, but increases the spatial error which mani-

fests itself in artificially diffused statistical results. This compromise between the statistical

accuracy and dispersive accuracy as pertaining to Lagrangian Monte Carlo schemes implies

that the optimum magnitude of AE cannot, in general, be specified a priori (Pope, 1985;

Colucci el al., 1998). This does not diminish the capability of the scheme, but exemplifies

the importance of the parameters which govern the statistics.

In an attempt to reduce the computational overhead, a procedure involving the use of non-

uniform weights is also considered. This procedure allows a smaller number of particles to

be imposed in regions where a low degree of variability is expected. Conversely, in regions

of highly varying character, a larger number of particles is allowed. This is akin to grid

compression in finite difference (or finite volume) schemes. Operationally, the particles

evolve with a discrete FMDF,

N

n-_--I

(35)

where w(") is the weight of the n 'h particle and Am is the mass of a particle with unit weight.
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The FMDF is the expectation of the discrete FMDF

N

fL(¢;x,0 = am x(")))

= - - x("))) (36)

for any n (1 < n < N). The brackets without the subscript L represent ensemble averaging.

With integration of this expression over the composition domain within an infinitesimal

volume, it is possible to demonstrate

where AV is the volume of the ensemble domain. The Favre filtered value of a transport

quantity (_(_b) is constructed from the weighted average

(Q)L= ,.(")_(¢("))
E._A_ w(") (38)

The approximations in Eqs. (37) - (38) are exact in the limit A E ---, 0 and the number

of particles within the ensemble domain becomes infinite (Pope, 1985). Equation (37) im-

plies that the filtered fluid density is directly proportional to the sum of the weights in the

Am
ensemble domain. With uniform weights, (p)t _ -h--oNE and (Q)L _ ___(¢(h)) (Pope,

1985) where NE is the number of particles in the ensemble domain. Hence, with uniform

weights, the particle number density decreases significantly in regions of high temperature.

The implementation of variable weights allows the increase of the particle number density

without a need to increase the number density outside of the reaction zone.

To evaluate the chemical source terms, the fine grained values of the temperature (T(")) for

all particles are calculated from the composition variable ¢(") = [Y1('), Y_("),..., Y(:), h(")]

and the fine grained values of density (p(n)) are determined from evaluation of the equation

of state at the reference pressure po. The filtered pressure is obtained by the filtered equation

of state, (p)t = (p)t(7"tT)L. In this equation (P)t is obtained from the finite difference solver

and the correlation (_T)L is obtained by ensemble averaging in the Monte Carlo solver. In

this way, the coupling between the hydrodynamic and the scalar fields is taken into account

and allows the investigation of the effects of variable density. The results obtained by this
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schemeare identified by the label FMDF-1.

The pressure((p)t) field as determined by the aboveprocedureexhibits somespatial oscil-

lations caused by statistical error. Since the spatial derivatives of (P)t are required in the

hydrodynamic solver, these oscillations can cause numerical difficulties. This is particularly

exacerbated by the nature of the compressible hydrodynamic code which allows propagation

of these oscillations throughout the computational domain. Our results shown below indicate

that while the extent of noise in the pressure field is noticeable, it is not significant in the

compositional variables. The amphtudes of the oscillations can be decreased by smoothing

of the (R.T)L field. An alternate procedure is also followed in which the correlation ('I_T)L

is evaluated by the finite difference solution of its transport equation. With the assumption

of constant T4., only the solution of the Favre filtered temperature equation is required. The

reaction source term in this equation is evaluated from the Monte Carlo solution. The re-

suits obtained by this scheme are identified by the label FMDF-2. While the finite difference

solution of the filtered temperature is used to calculate the filtered pressure in'FMDF-2,

the filtered temperature can also be evaluated directly from the Monte Carlo particles. The

results below indicate that the filtered temperature fields obtained by the two methods are

nearly identical.

In addition, another LES is also considered in which the modeled transport equations for the

filtered scalar and the generalized SGS scalar variance are simulated with the finite difference

scheme. The hydrodynamic solver and the models for the subgrid stress and mass flux are

identical to those in FMDF, but the effects of SGS fluctuations in the filtered reaction rate

are ignored. That is, Eqs. (30)-(31) are solved via the finite difference scheme with the

assumption (,_,,(¢b))c = S_,((O)c). The results based on this scheme are referred to as LES-

FD. A variant of this model, in which the filtered reaction rate is modeled by (S_,(_b))n =

(So((_b)L))L was also considered. However this closure did not show any improvements

over LES-FD; thus is not discussed. For non-reacting flows, the LES-FD results axe used

to demonstrate the consistency of the FMDF results. For reacting flows, the difference

between FMDF and LES-FD demonstrates the effects of the SGS fluctuations. However,

this comparison does not imply that these two methods are the only means of performing

LES of reacting flows; several other schemes are currently available as indicated in Section

1.
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Table 1: Attributes of the Computational Methods.

Method Mean Field Particle Properties Particle Fields Duplicate Fields

Equations Used in the Mean

Field Equations

LES-FD (P)t, (Ui)L, -- -- --

FMDF-1 (P)t, (Ui)L ¢, _(rh), - (p)_

_(_),_(¢)

FMDF-2 (p)t, (u_)r., ¢, _(¢), (S_r)L (P)t, (TZT)L

(TZT)L 7_(¢),T(¢)

It is noted that the FMDF-1 simulation procedure is similar to that typically used in PDF

methods (Pope, 1985; Tolpadi et al., 1995; Tolpadi et al., 1996). The procedure described

in FMDF-2 is proposed here for the first time. It is shown below that the pressure field

as determined by this method exhibits almost no spatial oscillations, thus no smoothing is

required. This scheme is starting to replace the equivalent of FMDF-1 in PDF methods

(Pope, 1997). The attributes of the LES-FD, FMDF-1 and FMDF-2 schemes are outlined in

Table 1. In this table, STZT denotes the source term in the equation governing the transport

of _T.

5 Results

5.1 Flows Simulated

The simulations of the following flow configurations axe considered:

1. A two-dimensional (2D) temporally developing mixing layer.

2. A 3D temporally developing mixing layer.

3. A 2D spatially developing planar jet.

4. A 2D spatially developing mixing layer.

The objectives of the numerical simulations are to: (i) demonstrate the consistency of the

Monte Carlo solution procedure, (ii) demonstrate the capabilities of the FMDF, (iii) appraise
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its overall performance, and (iv) highlight its deficiencies. The flow configurations (1),(3)

and (4) are suitable for objectives (i) and (ii) in which 2D simulations are sufficient. How-

ever, objectives (iii) requires 3D simulations. All flow configurations are used for objective

(iv). The 2D simulations are conducted to allow extensive computations for assessing the

consistency and accuracy of the FMDF and the convergence of the Monte Carlo results.

Both non-reacting and reacting flows are simulated, and FMDF and LES-FD are applied

to the cases itemized in (1)-(3). Some of these cases are also treated by DNS, the results

of which are used to assess the performance of the FMDF. Further appraisal is made by

comparison with laboratory data for the flow under item (4).

The temporal mixing layer consists of two co-flowing streams traveling in opposite directions

with the same speed (Riley et al., 1986; Jou and Riley, 1989; Givi, 1989). The reactants

A and/3 are introduced into the top and the bottom streams, respectively. The length in

the streamwise direction is large enough to allow for the roll-up of two large vortices and

one (subsequent) pairing of these vortices. In 3D simulations, the length of the domain

in spanwise direction is 60% of that in the streamwise direction. The layer is forced via

both 2D and 3D forcing functions (Moser and Rogers, 1991; Miller et al., 1994; Givi, 1994).

The initial values of the reactants A and/3 at each spanwise location in 3D simulations are

identical to those in 2D. In the figures presented below, z, V, z correspond to the streamwise,

cross-stream and spanwise directions (in 3D), respectively in all the simulations.

In the planar jet, the reactant A is issued from a jet of width D into a co-flowing stream

with a lower velocity carrying reactant /3 (Givi and Riley, 1992; Steinberger et al., 1993).

The size of the domain in the jet flow is0 < z < 14D, -3.5D < V < 3.5D. The ratio

of the co-flowing stream velocity to that of the jet at the inlet is kept fixed at 0.5. A

double-hyperbolic tangent profile is utilized to assign the velocity distribution at the inlet

plane. The formation of the large scale coherent structures are expedited by imposing low

amplitude perturbations at the inlet. The frequency of these perturbations correspond to

the most unstable mode and subharmonics of this mode as determined by the linear stability

analysis of spatially evolving disturbances (Michalke, 1965; Colucci, 1994). The characteristic

boundary condition procedure developed by Poinsot and Lele (1992) is used at the inlet.

This procedure facilitates evaluation of incoming waves which are necessary to satisfy the

continuity equation. Zero derivative boundary conditions are used at the free-streams and
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the pressureboundary condition of Rudy and Strikwerda (1980) is used at the outflow.

The flow configuration in (4) is the one considered in the laboratory experiments of Mungal

and Dimotakis (1984). In these experiments, a heat releasing reacting planar mixing layer

composed of diatomic hydrogen in one stream and diatomic fluorine in the other stream is

considered. Both reactants are diluted in nitrogen with the level of dilution determining the

extent of heat release. While the laboratory flow, like all turbulent flows, is inherently 3D,

it is dominated by large scale 2D structures (Brown and Roshko, 1974; Givi and Riley, 1992;

Givi, 1994). We demonstrate that 2D simulations are sufficient to capture the hydrodynam-

ics features of this flow reasonably well. The computational domain considers the region

54.84 cm x 27.42 era, which covers the whole region considered experimentally including

x = 45.7 cm where measured data are reported. In order to mimic a "naturally" developing

shear layer, a modified variant of the forcing procedure suggested by Saadham and Reynolds

(1989) is utilized. The cross-stream velocity component at the inlet is forced at the most

unstable mode as well as four harmonics (both sub- and super-) of this mode. A spatial lin-

ear stability analysis was performed to determine the most unstable mode of the hyperbolic

velocity profile imposed at the inlet. Sandham and Reynolds (1989) suggest the use of a

random phase shift to "jitter" the layer and to prevent a periodic behavior. A similar ran-

dom phase shift procedure is imposed here; a discrete approximation of the Wiener process

is applied for the phase shift at each time increment.

The flow variables are normalized with respect to selected reference quantities, denoted by

the subscript r. In the temporal mixing layer, the reference quantities are the free-stream

values and the reference length L, is defined such that _ = 2.83, where 6_o is the initial

vorticity thickness (6_ = au where (Ul)L is the Reynolds averaged value of the
[o(,,,)Lla_,],.. '

Favre filtered strearnwise velocity and AU is the velocity difference across the layer). In

the spatial flows, normalization is performed with respect to the values in the high speed

stream. In the planar jet L_ = D. In the hydrogen-fluorine mixing layer, L, is equal to

the distance from the virtual origin to the downstream measuring station in the experiment.

These quantities are used to define the Reynolds number Re - e.V.L. For the temporal

mixing layer, the Reynolds number in terms of the total velocity difference across the layer

(_U = 2U_) is Rea_o = 5.66Re. The non-dimensional time is given by t" =
Lr "
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5.2 Reaction Mechanisms

For the flow configurations (1)-(3), the reaction scheme is of the type ,4 + B --* P with

an Arrhenius reactant conversion, S_ = St_ = -pk!ABexp(-E../RT), where k s is the

pre-exponential factor, E, is the activation energy, and A, B denote the mass fractions

of species .4, B, respectively. The species .4, B, :P are assumed thermodynamically iden-

tical and the fluid is assumed to be calorically perfect. The normalized reaction rate is

S_ = -p'DaABexp(-Ze/T') in which Ze = E,/RT, and Da = _ denote the Zel-v,/_

dovich number and the Damk5hler number, respectively. T, denotes the reference ambient

temperature. The degree of exothermicity is parameterized by the non-dimensional heat

release parameter Ce = _ where Ah_, is the heat of reaction. Both constant rate and

temperature dependent reactions are considered.

The reaction mechanism associated with the mixing layer experiment is more complex. The

hydrogen-fluorine reaction can be represented by the reaction (Mungal and Dimotakis, 1984)

H_ + F: --, 2HF, AQ = 65 kcal/mol, (39)

where AQ is the heat of reaction. This reaction belongs to the more general family of

hydrogen-halogen reactions (Spalding and Stephenson, 1971; Chelliah, 1989). The heat

released in a mixture containing 1% mole fraction of F2 and 1% mole fraction of H2 diluted

in nitrogen results in an adiabatic temperature of 93K above the ambient (Mungal and

Dimotakis, 1984). The global representation in Eq. (39) is composed of a pair of second-

order chain reactions (Mungal and Dimotakis, 1984)

(-610'_ (40)H2 + F _ HF + H, AQ = 32 kcal/mol, kl = 2.6 × 1012T°'Sexp \--_--_],

H + F2 _ HF + F, AQ = 98 kcal/mol, ks = 3 x 109T l"sexp \ ROT ] , (41)

where the reaction rate constants kl and k2 are given in units of cm3/(mol s), T in K, and the

universal gas constant R ° in cal/(mol K). At low concentrations of the H atom, the reverse

of the first of these two reactions is slow. Additionally, the rate data suggest that the reverse

of the second reaction is also negligible as compared to the forward reaction (Chelliah, 1989).
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The explosion limits for the hydrogen-fluorine reaction indicate that a mixture of these two

gases at typical ambient conditions is stable (Chen et al., 1975; Gmelin, 1980). Therefore,

in order to initiate reaction, a source of F atoms must be provided (Mungal and Dimotakis,

1984). Experimentally, this is accomphshed by uniformly mixing a small amount of nitric

oxide with the hydrogen-nitrogen mixture. The nitric oxide reacts with the fluorine to

produce free fluorine atoms

NO+F2_NOF+F, AQ=18kcal/mol, k3=4.2x1011exp .50 . (42)

The reverse of this reaction may be neglected (Rapp and Johnston, 1960). An additional

reaction serves to Limit the nitric oxide concentration (Baulch et al., 1981; Cool et al., 1970)

F + NO + M _h_. NOF + M, AQ = 57 kcal/mol, k4 _ 3 x 10 TM cme/(mol2s). (43)

While it is necessary to add nitric oxide to initiate reaction, the addition of excessive amounts

would deplete the availability of the free F atoms. Mungal and Dimotakis (1984) indicate

that keeping the product of nitric oxide and diatomic fluorine molar concentrations at 0.03%

results in a rapid combustion. It was also noted that an increase of 50% in the nitric oxide

concentration results in no appreciable changes in the temperature. This suggests that the

hydrogen-fluorine reaction can be approximated by the limit of infinite rate chemistry. In

the simulations, therefore, both finite and infinite rate models are considered. Due to the

very fast rate of the reaction, the compositional change due to reaction is implemented

in 10 incremental time steps for every hydrodynamic time step. These simulations with

stiff reaction rates are obviously computationally intensive. The implementation of the

infinite rate chemistry model (Williams, 1985) is significantly less expensive. With this

approximation, it may be possible to employ the assumed FDF approach (Madnia and Girl,

1993). However, in order to demonstrate the operationally of the FMDF, here this procedure

is employed for both finite and infinite rate models.

5.3 Numerical Specifications

The magnitude of the flow parameters considered in DNS are dictated by the resolution

which can be afforded. The primary parameters are Re, Da, Ze, Ce, Sc, and Pr. In
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all simttlations Sc = Pr = 1. All finite difference simulations (in both DNS and LES) are

conducted on equally-spaced grid points (Az = Ay = Az (for 3D) = A). The highest

resolution in DNS of the 2D temporal mixing layer consists of 433 × 577 grid points which

allows reliable calculations at Re = 2,000, Ce = 5, Ze = 8, and Da = 11.92. The DNS of

the 3D temporal shear layer is conducted with a resolution of 217 × 289 x 133 grid points

with Re = 400, Da = 1 and Ce = Ze = 0. The DNS of the planar jet is performed on

1201 x 601 grid points and a/lows accurate simulations with Re = 10,000, Ce = 2.5, Ze = 8

and Da = 119.2. The FMDF and LES-FD are conducted with lower grid resolutions. The

LES of the temporal mixing layer is conducted on 37 x 49 and 55 x 73 grid points for 2D

simulations while resolutions of 37 × 49 × 23 and 55 x 73 × 34 are utilized in 3D. The LES

of the spatial jet and hydrogen-fluorine mixing layer are conducted on 201 × 101 grid points.

A top-hat filter function (Aldama, 1990) of the form

Nj

G(x'-x)= lq
i=I

{x,) = < = (44)
0 > 2

is used with Ac = 2A and Na denotes the number of dimensions. No attempt is made to

investigate the sensitivity of the results to the filter function (Vreman et al., 1994) or the

filter size (Erlebacher et al., 1992).

For FMDF simulations of the temporal mixing layer, the Monte Carlo particles are initially

distributed throughout the computational region. For the jet flow, the particles are supplied

in the inlet region -1.75D < y < 1.75D. As the particles convect downstream, this zone

distorts as it conforms to the flow as determined by the hydrodynamic field. In regions pop-

ulated with particles, _-_"E w(") remains proportional to the instantaneous filtered density

(within statistical error). In regions without particles, a delta function FDF corresponding to

the free-stream composition is enforced. The simulation results are monitored to ensure the

particles fully encompass and extend well beyond regions of non-zero vorticity and reaction.

In the temporal mixing layer, due to flow periodicity in the streamwise and spanwise direc-

tions, if the particle leaves the domain at one of the boundaries new particles are introduced

at the other boundary with the same compositional values. In the spatially evolving jet and
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the planarmixing layer, new particles are introduced at the inlet at a rate corresponding to

the desired(imposed) local particle number density and fluid velocity. In some of the planar

jet simulations and all of the hydrogen-fluorine mixing layer simulations, variable paxtide

weights are employed. With prescription of the filtered fluid density, the particle weight is

adjusted to yield the proper mass flux across the boundary. All other simulations utilize

uniform weights. The sensitivity of the statistical results to the number of particles per grid

cell (NPG) and the size of the ensemble domain is studied in the temporal mixing layer.

The following sizes are considered: AE = 2A, A, A/2.

In the FMDF simulation of the experimental mixing layer configuration, initially NPG = 5

in the free-streams and gradually increases in the cross steam direction peaking to NPG = 25

at the splitter plate (y = 0). This yields 20 to 100 sample points per ensemble for AE = 2A.

The particles are supplied in the region -0.12L_ _< y < 0.12L, where L_ = 45.7 crn. The

composition of incoming particles is set according to composition of the fluid at the point of

entry. The magnitudes of the Reynolds, Peclet, DarnkShler and Zeldovich numbers and the

velocity ratio across the layer in the simulations are the same as those in the experiment,

but the maximum value of the Mach number in the simulations is 0.31 which is higher than

that in the experiment. This was necessary in the compressible flow solver employed for

the simulations. With the values of the physical parameters in this experiment, it is not

possible to employ DNS and LES-FD for this flow, thus only FMDF results are compared

with experimental data. For that FMDF-1 is used in which smoothing of (7"£T)t. is done

with a box filter consisting of 3 × 3 grid points with equal weights.

The simulated results are analyzed both instantaneously and statistically. In the former, the

instantaneous contours (snap-shots) and the scatter plots of the scalar values are considered.

In the latter, the "Reynolds-averaged" statistics are constructed form the instantaneous data.

In the temporal mixing layer, the statistics are constructed by the ensemble from all the grid

points in the homogeneous direction(s) x (and z in 3D). In the spatially developing mixing

layer and the jet flow, averaging is conducted via time sampling. All Reynolds averaged

results are denoted by an overbar. In the presentations below, the asterisk (denoting the

normalized quantities) is dropped.
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5.4 Model Parameters

In the implementation of the MKEV, the magnitude of the reference velocity/di is set to zero

in the cross-stream and spanwise directions, and to the average of the high and low speed

streams in the streamwise direction. Additionally, the ratio of the filter size at the secondary

level to that at the grid level is Aa,/Ac = 3. In all simulations Cz = 0.006. The magnitude

of CR is 0.020 and 0.013 for 2D and 3D, respectively. The subgrid mass flux is modeled via

Eq. (14). In all cases except LES of the hydrogen-fluorine mixing layer, Prt = Sea = 0.7. No

attempt is made to determine the magnitudes of these model constants in a dynaraic manner

(Germano, 1992). The subgrid mixing model requires the input of the constant Co which

also determines the SGS variances. The value Ca = 4 is used in most simulations. In the

hydrogen-fluorine configuration Sca = Prt = 0.4 and Ca = 6. Some constant density test

simulations are also conducted in which Ca -- 3 as previously used by Colucci et al. (1998).

The non-universality (flow dependence) of the hydrodynamic model constants (CI, CR, Prt,

Sct) has been well recognized and was expected here. The additional constant introduced

by FMDF is Ca, although this constant also appears if the SGS variance is considered in the

conventional LES-FD. This non-universality, in general, diminishes the predictive capability

of LES; however the range of the values as considered here is not very broad.

5.5 Consistency of FMDF

The objective in the results presented in this subsection is to demonstrate the consistency

of the FMDF formulation. For this purpose, the LES results via FMDF and LES-FD are

compared against each other in 2D and 3D temporal mixing layers. Since the accuracy of

the finite difference scheme is well-established, this comparative analysis provides a means of

assessing the performance of the Monte Carlo solution of the FMDF. For most of the results

in this section, NPG = 50 in 2D and NPG = 20 in 3D at locations where (p)t = 1. In

2D, As = A and in 3D, AS = 2A. Several additional simulations are also performed with

varying values of NPG and AE to asses their effects.

Simulations of 2D non-reacting temporally developing mixing layers are conducted in which

the flow is initiated with non-uniform density and temperature distributions. The initial

filtered density is distributed as a "spike" at the middle of the layer. With uniform weights
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assignedto the Monte Carlo particles, the particle numberdensity must remain proportional

to the fluid density. This is observedin Fig. 1, where it is demonstrated that the filtered

density evaluated from the Monte Carlo particles matchesvery well with that of the finite

differencecalculated valuesat the Eulerian grid points. The valuesgenerated by the finite

differencesolution are identified by FD and the resultsgeneratedby ensembleaveragingof

the Monte Carlo particles are identified by MC. Figure 1 shows that at the final time of

the simulation (when the flow has experiencedthe pairing of two neighboring vortices) the

Reynolds averagedfiltered density calculated by the finite difference and the Monte Carlo

proceduresare very close. The particle number density exhibits an appreciable degreeof

oscillations due to statistical errors associated with a finite sample of particles.

Figure 2 shows the temporal evolution of the vorticity thickness. When the flow starts with

uniform density, the effect of thermodynamic quantities on the hydrodynamics is negligible.

Thus the 6_ profiles as obtained by FMDF-1 and FMDF-2 are nearly identical. With an

initial density spike, the growth of the layer is damped as expected (McMurtry et a/., 1989;

Jackson, 1992; Colucci, 1994), but the results obtained by FMDF-1 are very close to those

by FMDF-2. The slight differences are due to the numerical solution procedures. The results

obtained by both procedures are close to those obtained by DNS.

In Fig. 3, the contour plots of the resolved vorticity and temperature at the final time

(t = 44) as obtained by FMDF-1 and FMDF-2 are shown. This figure provides a visual

demonstration of the consistency of the FMDF as the results via the two FMDF procedures

are similar. The difference, as expected, is exhibited by the oscillations in FMDF-1. The

effect of the baroclinic torque in generating vorticity near the braids is captured by both

simulations. To exhibit the extent of the noise more clearly, the Reynolds averaged values of

the resolved pressure and the mass fraction of a conserved scalar are shown in Fig. 4. The

most significant difference is evident in the filtered pressure field which exhibits appreciable

oscillations in FMDF-1. These oscillations are reduced by application of a local least square

filter to smooth the Monte Carlo (T)L field. This operation does not modify the other

statistical quantities. Several other filter functions are also considered and their influence

is summarized in Fig. 5 where the percentages of the differences between the values of (Pit

via FMDF-2 and FMDF-1 with smoothing are shown. In all cases, the difference is small

(less than 2%); the most significant difference is expectedly observed when no smoothing
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operation is applied. Figure 5 also showsthat the differenceis significantly decreasedas the

number of Monte Carlo particles is increased.

To demonstrate the consistencybetween the FMDF and LES-FD, a comparison is made

betweenthe momentsof the massfraction of A in the non-reacting temporal mixing layer

with an initial density spike as obtained by the two procedures. Figure 6 shows the instan-

taneous contour plots of the Favre filtered mass fraction of species .A and Fig. 7 shows the

Reynolds averaged values of the moments of this mass fraction. In these simulations, the

filtered temperature is calculated via FMDF-1 without smoothing. The similarity of FMDF

and LES-FD results is evident in both figures. The agreement in the first moment (Figs.

7(a,c)) is quite good even for large values of Ar and small values of NPG. The difference is

more apparent in the subgrid variance values (Figs. 7(b,d)). However, the difference becomes

smaller as A_ decreases.

In reactive flows, the consistency established above no longer exists since the reaction term

appears in a closed form in the FMDF formulation but not in the moment equations of LES-

FD. This inconsistency, which motivates the use of FMDF, is illustrated in Fig. 8 where the

temporal evolution of the integrated "total product" (gp(t)= f (P)L(y,t)dy) in a constant

density reacting temporal mixing layer with Da = 2 and Ce = Ze = 0 is shown. In these

simulations, the LES resolution is 37 × 49 and Re = 500. The LES results are also compared

with those obtained via DNS with 433 × 577 grid points. It is shown that the FMDF

results are very close to those via DNS, but LES-FD significantly overpredicts the amount

of products formed. Also shown in Fig. 8 are the results via the constant density filtered

density function (FDF) formulation (Colucci et aI., 1998) which is suitable for this flow. The

close agreement of FMDF, FDF and DNS results indicate both the consistency of the Monte

Carlo solution and the relative superiority of FMDF over LES-FD.

To generalize the results above, LES of a 3D temporally developing mixing layer is con-

ducted. In these simulations, a non-reacting flow with a density spike similar to that in

2D is considered. The statistical results in simulations with 3D forcing exhibit significant

variations along the spanwise direction. The filtered pressure obtained from FMDF-1 ex-

hibits similar trends to those obtained from FMDF-2 but does portray statistical noise. As

is the case for 2D simulations, the filtered mass fraction and temperature calculated by the

Monte Carlo solver are close to those obtained by the finite difference simulations. This is
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illustrated Fig. 9 in which scatter plots of (T)L and (AlL valuesgenerated by FMDF-2 are

shown. The correlation coefficient betweenthe Monte Carlo (MC) and the finite difference

(FD) values is 0.999for both setsof results shown.

5.6 Validation via DNS Data

The objectives in this subsection are to assess the overall performance of FMDF, to appraise

the validity of the submodels employed in the FMDF transport equation, and to demonstrate

the capabilities of FMDF for LES of exothermic chemically reacting flows. To meet these

objectives, the FMDF results are compared against DNS results of the same flow configura-

tions with the same magnitudes of the physical parameters (Re, Da, etc.). For a meaningful

comparison, the DNS data are filtered and down-sampled onto coarse grid points correspond-

ing to those employed in FMDF. At this point it is emphasized that FMDF is not claimed

to be an alternative to DNS; the comparisons made here are primarily for assessment of

the FMDF. For further comparative assessments, the FMDF results are also compared with

those via LES-FD. Both 2D and 3D simulations are considered. Unless otherwise specified,

all Monte Carlo simulations presented in this section are based on the FMDF-2 formulation.

To quantify the performance of FMDF in LES of the exothermic reacting 2D temporal mixing

layer, in Fig. 10 the cross-stream variation of the Reynolds averaged filtered temperature

values at t = 44 are shown. In this simulation, Da = 11.92, Ze = 8 and Ce -- 5. The FMDF

results are calculated with both As =- A and As = 2A. Initially, the particle number density

is set to NPG = 40 with initial uniform fluid density. The size of the ensemble domain for

the evaluation of the Favre filtered statistics does not have a significant influence on the first

filtered moment. The deviation of LES-FD results from those via FMDF and/or DNS is

evident. This behavior is observed at all times for all the cases considered. It is expected

that the difference between DNS and LES-FD results would be even more as the magnitude

of the DamkShler number and/or Reynolds number increases (Colucci et al., 1998). Figure

10 shows that for this flow with a rather significant variation of temperature, the averaged

filtered temperature is predicted well by FMDF. Comparatively, LES-FD overpredicts the

filtered temperature values. While the finite difference solution of the filtered temperature

is used to calculate the filtered pressure in the FMDF-2, the filtered temperature can also
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be evaluated directly from the ensemble of the Monte Carlo elements. Figure 10 indicates

that the evaluation of the filtered temperature in this way (denoted by MC ensemble) is

consistent with that obtained by FMDF-2.

The results of the spatially developing jet flow are shown in Figs. 11-17 in which several

issues pertaining to the Monte Carlo simulation are addressed. Figures 11 and 12 show the

instantaneous contours of the filtered pressure and the filtered temperature values, respec-

tively. Parts (a), (b), and (c) of these figures correspond to results with FMDF-1 without

smoothing of the temperature field, FMDF-1 with smoothing, and FMDF-2, respectively.

While the temperature fields as obtained by all three procedures are similar, the differences

between the pressure fields are noticeable. The behavior portrayed in Fig. ll(c) is physical,

whereas the oscillations observed in Figs. ll(a,b) could cause numerical problems. While

these oscillations did not cause problems here, Fig. 11 shows that FMDF-2 is more robust

and is recommended for both LES and PDF simulations. In Figs. 13 and 14 the influence

of the particle weights in the Monte Carlo simulation is exhibited. Figure 13 shows that the

instantaneous particle number density and the filtered fluid density calculated by FMDF are

highly correlated in these simulations in which uniform particle weights are employed. It

is noted that the particle number density is lowest in the high temperature reaction zones.

Figure 14 shows the results via variable weights. It is observed in Fig. 14(a) that there

is a higher concentration of particles in the reaction zones in comparison to the case with

uniform weights. The particle mass density shown in Fig. 14(b) is highly correlated with the

filtered fluid density (Fig. 14(c)). A comparison between Figs. 13(b) and 14(c) indicates that

despite the significant difference in the total number of particles and particle weighing pro-

cedures, the filtered density fields are nearly identical in the two simulations. This similarity

is also reflected in the streamwise variations of the total product (_Sp(x) = f (P)r.(x,y)dy)

in Fig. 15. The results via both procedures are nearly identical and are superior to LES-FD

in matching with DNS results. The computational time in the simulations with variable

weights is about half of that in simulations with equal particle weights.

As indicated previously, the essential difference between FMDF and LES-FD is due to the

ability of FMDF in accounting for the SGS scalar fluctuations. To demonstrate this explicitly,

in Fig. 16, the contour plots of the "SGS unmixedness" defined as (p)e [('_((_))L -- '_((_)L)]

are shown. It is observed that the FMDF results are in good agreement with DNS. The con-
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tribution of the SGS unmixedness to the total filtered reaction rate is expected to increase as

the magnitudes of the Re, Da, Ce increase. Therefore, it is anticipated that the difference

between DNS and LES-FD results would be even more with increased values of these param-

eters. Scatter data of the instantaneous product mass fraction P vs. the mixture fraction

Z are presented in Fig. 17. These data are gathered at the final time of the simulations

including the results within the region z _> 3.5D. Both the DNS (Fig. 17(a)) and FMDF-2

(Fig. 17(b)) exhibit significant scatters indicative of appreciable finite rate chemistry effects.

The FMDF is able to capture the scatter reasonably well. It is important to note that while

the fine-grained values associated with the particles may be interpreted as instantaneous

realizations, conventional LES cannot offer such _de-filtered _ information.

The major conclusions drawn from the 2D results are confirmed in 3D simulations. In Fig.

18, the time-variation of the total product as predicted by FMDF of the constant density

temporally developing reacting mixing layer is compared with DNS and LES-FD results.

Consistent with the 2D results, the total product predicted by FMDF is closer to DNS in

comparison to that of LES-FD. With increased resolution in LES, the difference between

DNS and LES-FD is less, but the FMDF results are not significantly modified.

5.7 Validation via Laboratory Data

The experiments of Mungal and Dimotakis (1984) were conducted with several values of the

equivalence ratio, ¢ = Co2/Col where Co refers to the free-stream molar concentration and the

subscripts 1 and 2 denote the reactants in the high- and the low-speed streams, respectively.

Equivalence ratios of 1, 2, 4 and 8 were considered. In addition, "flip" experiments were also

landlconducted in which inverse values of the equivalence ratio (¢ = 1, 5, _ _) were consid-

ered. All of these cases are considered in the simulations by FMDF-1. The implementations

of DNS and LES-FD are not possible for this flow.

Figure 19 displays the contour plots of the instantaneous and the Reynolds averaged tem-

perature field for the case with ¢ = 1. In this simulation, the finite rate reaction scheme is

employed. The peak value of the instantaneous temperature field approaches, but is lower

than, the adiabatic flame temperature. This is due to the filtering of the temperature field.

The peak values of the time averaged temperature values are considerably lower than that
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of the adiabatic flame temperature, an intuitive fact indicated by Mungal and Dimotakis

(1984) and also by Wallace (1981). However, it is noted that a large number of individual

particles (i.e. realizations) do indeed approar.h the adiabatic fimit.

The FMDF predictions are compared with experimental results both qualitatively and quan-

titatively. Figure 20 shows the time history of the temperature at several cross stream loca-

tions as obtained by FMDF. Each vertical increment represents temperature values ranging

from the ambient to the maximum attained instantaneous temperature (T,,,_). These time

traces are qualitatively similar to those measured experimentally (Mungal and Dimotakis,

1984). One notable difference is observed near the middle region of the layer. In this region,

there are instances when the simulations exhibit near ambient temperature values (cold

fluid). While there is some evidence of this behavior in the experiments, it is more pro-

nounced in the simulations. This is partly attributed to the 2D nature of the simulations as

the small scale mixing present in 3D tend to provide a more effective mixing (Miller et al.,

1994). For this reason it is expected that the minimum values of the time averaged temper-

ature in the vicinity y = 0 to be slightly lower than those measured experimentally. Another

reason for this difference is due to the fact that the cold wire probes may include some

thermal lag and conduction errors (Scadron and Warshawsky, 1952; Paranthoen et al., 1982;

Mungal and Dimotakis, 1984) manifesting in an artificial "smoothing" effect in the measured

temperature values.

For a quantitative comparison, in Fig. 21 the cross stream variations of the Reynolds averaged

temperature rise normalized by the adiabatic temperature rise (T_) are shown. The quantity

_5_denotes the distance between the points where the cross stream mean temperature rise is

1% of the maximum mean temperature rise and V0 is the cross stream location where the

time-averaged streamwise velocity is the average of the high- and low-speed velocities. No

attempt is made to de-filter the LES results and (T)L is directly compared to experimental

data. The agreement between the FMDF and experimental data is good. Also shown in this

figure are the results based on the FMDF with the infinite reaction rate model. As expected,

the results axe very close to those of the finite rate simulation, but the computational cost

is significantly less. In this particular case, the time requirement for FMDF simulations

with the infinite rate chemistry is approximately 16% of that for the finite rate chemistry

simulations. Due to this lower cost, and the confidence in the infinite rate model, the
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remaining simulations are conducted with thismodel.

To demonstrate the flipeffect,Fig. 22 shows the cross-stream variation of the normalized

temperature for allequivalence ratios(the simulations with _b= I are repeated). Two obser-

vationsare made consistent with the experimental results:(1) the peak value of the mean

temperature in each of the experiments is differentfrom that in the corresponding flipex-

periment, although the adiabatic flame temperature isthe same, (2) the peak temperature

value shiftstoward the lean reactant stream. Since the only differencebetween each of the

two cases isthe interchange of the low and high speed reactants,the reason for thisbehavior

is due to the differententrainment processes (Mungal and Dimotakis, 1984). Additionally,

with the exception of the two cases with ¢ = 1, the peak temperature ishigher for equiva-

lence ratiosgreater than one compared to the reciprocalequivalence ratios.Consistent with

the experimental results,the peak normalized temperature reaches a maximum for an equiv-

alence ratioin the range 1 < _b_<2. These trends are more clearlyportrayed in Fig. 23(a),

which Mungal and Dimotakis (1984) referto as Uinferred"temperature profiles.These reflect

the temperature ifthe high speed reactant was fixed at 1% molar concentration while the

low speed stream was varied from _% through 8% to obtain the desired equivalence ratios.

This figuresupports the conclusion of Mungal and Dimotakis (1984) that there existsan

asymptotic limit to the amount of products formed as the high speed reactant isburned to

completion. A similar behavior isexhibited in Fig. 23(b) in which the inferredtemperature

profilesare shown for the situationin which the low stream reactant is fixedat I% and the

high speed reactant isvaried to obtain the same equivalence ratios.

Further quantitative comparison between the FMDF and experimental resultsis made in

Fig. 24 which shows the variationof the normalized product thickness with the equivalence

ratio.The product thicknessesare defined as (Mungal and Dimotakis, 1984)

/_ /__°°Cp(T(y))L+oo Cp(T(y))L dy, 6p2 =
6_, = _ co_AQ _ co2AQ dY

(45)

where Cp is the molar heat capacity of the carrier gas. Figure 24(a) indicates the FMDF

predicts the extent of product formation reasonably well over a wide range of equivalence

ratios. At low values of ¢, the amount of products varies nearly linearly as the low speed

reactant is consumed when excessive amounts of the high speed reactant are present. At
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Table 2: The computational times for 2D planar jet simulations.

U Simulation

DNS

FMDF

LES-FD

Grid resolution Normalized CPU timer

1201 x 601 242.5

201 x 101 7.62

201 x 101

t Unit correspond to 760 seconds on a Cray-C90.

high valuesof the equivalence ratio,the product thickness approaches an asymptotic value

as the reaction progress isinhibited by a lack of high speed reactant relativeto the amount

of reactant in the low speed stream. Figure 24(b) demonstrates a similaragreement between

the experimental and the FMDF results.

5.8 Computational Requirements

To appraise the computational requirements of the FMDF, the computational times for some

of the cases are monitored. Tables 2 and 3 listthe normalized CPU times required for the

simulationsof the reacting 2D planar jet and the reacting 3D temporally developing mixing

layer,respectively.These cases axe selectedsince simulations via allthree schemes (FMDF,

LES-FD and DNS) are conducted. The computational times listedfor FMDF axe those asso-

ciated with FMDF-2, although the increase in cost over FMDF-I isinsignificant.Obviously

the overhead of the FMDF simulation isextensiveas compared to LES-FD; nevertheless,the

computational time for FMDF simulation is significantlylessthan that of DNS. Again itis

emphasized that FMDF isnot claimed to be an alternativeto DNS; neitheritisclaimed that

the FMDF iscapable of reproducing allDNS results.However, the close proximity of values

obtained FMDF and DNS, and the substantiallower computational costs of FMDF makes

itas a viable tool for simulations of reacting flow systems for which DNS isnot possible.

6 Summary and Concluding Remarks

The basic objective of this work is to develop a methodology for large eddy simulation (LES)

of turbulent reacting flows, with inclusion of exothermicity and variable density effects. The
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Table 3: The computational times for 3D temporal mixing layer simulations.

l!Simulation !1Grid resolution Normalized CPU timeJ

DNS 217 x 289 x 133 182.71

FMDF 55 x 73 x 34 7.64

LES-FD 55 x 73 x 34 I

t Unit correspond to 655 seconds on a Cray-C90.

methodology is termed the "filtered mass density function" (FMDF) and is based on the

extension of the "filtered density function" (FDF) developed previously for LES of constant

density, reacting, isothermal flows (Colucci et al., 1998). The procedure for this extension is

similar to that used in probability density function (PDF) methods in Reynolds averaging

procedures (Pope, 1985). Here the FMDF is considered for treatment of scalar variables. A

transport equation is developed for the FMDF in which the unclosed terms, similar to PDF

methods, are due to SGS convection and mixing. The former is modeled via the gradient

diffusion model as done in most LES of non-reacting flows (Galperin and Orszag, 1993); the

latter is closed via the IEM model as typically used in PDF methods (Pope, 1985).

The modeled FMDF transport equation is solved numerically via a Lagrangian Monte Carlo

scheme in which the solutions of the equivalent stochastic differential equations (SDEs) are

obtained. Two Monte Carlo procedures are considered. The first (FMDF-1) is similar to that

typically used in PDF methods (Pope, 1985; Tolpadi et al., 1995; Tolpadi et al., 1996). The

second (FMDF-2) is new. Both schemes preserve the ItS-Gikhman nature of the SDEs and

provide a reliable solution for the FMDF. The second scheme is more robust in dealing with

the statistical noise generated by the Monte Carlo scheme. The consistency of the FMDF,

the convergence of its Monte Carlo solutions, the advantages and drawbacks of the FMDF

as well as the performance of the closures employed in the FMDF transport equation are

assessed. This is done via extensive comparisons between the results obtained by the Monte

Carlo procedure and the finite difference solution of the transport equations of the first two

filtered moments of scalar quantities (LES-FD). In non-reacting flows, the consistency and

convergence of the Monte Carlo solution is demonstrated by good agreements of the first two

SGS scalar moments with those obtained by LES-FD. The performance of FMDF and its

superiority over LES-FD are demonstrated by comparison with direct numerical simulations

(DNS) results of two-dimensional (2D) and 3D temporally developing mixing layers, and
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a 2D spatially developing jet. In all casesthe FMDF results are shown to be in closer

agreement with the DNS data than are the LES-FD results in which the influence of the

SGS fluctuations on the reaction rate are ignored.

The performance of the FMDF is further appraised by compa_son against the experimental

data of Mungal and Dimotakis (1984) of a spatially developing mixing layer involving the

exothermic hydrogen-fluorine reaction. The FMDF is considered via both finite rate and

infinitely fast chemistry. The treatment of the former with a stiff reaction source term

is computationally expensive, but comparison of the results with those of the latter gives

confidence in the less costly infinite rate procedure. The results produced by both methods

compare favorably with experimental data and some qualitative features, such as the _lip

effect", are captured by the FMDF simulation.

In addition to the those in the hydrodynamic closure, there are three constants for the

LES of scalar quantities: Sea and Prt for the SGS convective fluxes of the mass fraction

and the temperature, respectively, and Ca as appears in the SGS mixing model. Based

on the present results and those of Colucci et al. (1998) for a variety of different flows

(2D and 3D, constant and variable density, different chemistry schemes, etc.) it seems that

Sq = Prz _ 0.4 - 0.7, C_ _ 3 - 6. The predictive capability of the FMDF can be improved

by future developments in PDF methods.

While the FMDF method is computationally more expensive than conventional LES method,

it is much more advantageous for treating reacting flows. The computational overhead is

tolerable for simulations of complex reacting flows for which DNS is not feasible.
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Figure Captions

Figure 1. Cross-stream variation of the filtered density in the 2D temporal mixing layer

obtained by FMDF-1 at t = 44.

Figure 2. Vorticity thickness vs. time in the 2D temporal mixing layer.

Figure 3. Contours of the filtered vorticity and temperature in the 2D temporal mixing layer

obtained by FMDF-1 (right side) and FMDF-2 (left side) at t = 44. Top: vorticity field,

bottom: temperature field.

Figure 4. Cross-stream variation of the mean filtered quantities at t - 44 in the 2D temporal

mixing layer. (a) Pressure, (b) mass fraction of a conserved scalar.

Figure 5. Cross-stream variation of the percentage of the difference in pressure as obtained by

FMDF-2 and FMDF-1 with different smoothing in the 2D temporal mixing layer at t -- 44.

Long-dashed line: no smoothing, NPG = 50 and AE = A; Dotted-dashed line: smoothed

with a Gaussian filter, NPG = 50 and AE = A; solid line: smoothed with a box filter,

NPG = 50 and/XE = A; dashed line: smoothed with a local least square filter, NPG = 50

and AE = A; Long-dashed thick line: smoothed with a Gaussian filter, NPG - 200 and

A E = A; Dotted thick line: smoothed with a Gaussian filter, NPG = 50 and/k E - 2A.

Figure 6. Contours of the filtered values of the conserved scalar at t = 44 in the 2D temporal

mixing layer as obtained by (a) LES-FD, (b) FMDF.

Figure 7. Cross-stream variation of mean filtered scalar ((a) and (c)) and the generalized

variance of the conserved scalar ((b) and (d)) in the 2D temporal mixing layer.

Figure 8. Total product variation with time in the 2D temporal mixing layer.

Figure 9. Scatter plots of the filtered quantities as obtained by the Monte Carlo (MC)

solution vs. those via the finite difference (FD) solution in the 3D temporal mixing layer:

(a) temperature, (b) the conserved mass fraction.

Figure 10. Cross-stream variation of the normalized filtered temperature in the 2D temporal

mixing layer at t = 44.

Figure 11. Contours of the normalized filtered pressure in the planar jet: (a) FMDF-1 with
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no smoothing of the filtered temperature, (b) FMDF-1 with smoothed filtered temperature

with box filter, (c) FMDF-2.

Figure 12. Contours of the normalizedfiltered temperature in the reactive planar jet: (a)

FMDF-1 with no smoothingof the filtered temperature, (b) FMDF-1 with smoothedfiltered

temperature with box filter, (c) FMDF-2.

Figure 13. Contours of (a) the particle number density, (b) the fluid filtered density in the

reactiveplanar jet simulations with uniform weights.

Figure 14. Contours of (a) the particle number density, (b) the particle massdensity, (c) the

fluid filtered density in the reactive planar jet simulations with variable weights.

Figure 15. Streamwisevariation of the total product in the reactive planar jet.

Figure 16. Contours of the normalizedinstantaneousSGSunmixednessin the reactive planar

jet, (a) DNS, (b) FMDF.

Figure 17. Scatter plot of the product massfraction vs. the mixture fraction in the reactive

planar jet, (a) DNS, (b) FMDF.

Figure 18. Total product vs. time in the 3D temporal mixing layer. (a) lowerLES resolution

(37 x 49 x 23), (b) higher LES resolution (55 x 73 x 34).

Figure 19. Contour plots of (a) instantaneous Favre filtered temperature, (b) time averaged

Favre filtered temperature for ¢ = 1 in the hydrogen-fluorine mixing layer. The values are

normalized by Tr.

Figure 20. Time history of the instantaneous Favre filtered temperature in the hydrogen-

fluorine mixing layer at several cross stream locations.

Figure 21. Cross stream variation of the normalized mean temperature for ¢ = 1 in the

hydrogen-fluorine mixing layer.

Figure 22. Cross stream variation of the normalized mean temperature for all equivalence

ratios in the hydrogen-fluorine mixing layer.

Figure 23. Cross stream variation of the "inferred" mean temperature profiles for (a) 1%

high speed mole fraction, (b) I% low speed mole fraction for all equivalence ratios in the

hydrogen-fluorine mixing layer.
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Figure 24. Normalized product thickness variation with equivalence ratio in the hydrogen-

fluorine mixing layer: (a) //pl vs. the equivalence ratio, (b) 6p2 vs. the inverse equivalence

ratio.
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Appendix III

Large Eddy Simulation of Scalar Transport in a Turbulent Jet Flow



LARGE EDDY SIMULATION OF SCALAR TRANSPORT IN
A TURBULENT JET FLOW

S.C. GARRICK

Department of Mechanical Engineering
University of Minnesota

Minneapolis, MN 55_55-0111

AND

F.A. JABEPd AND P. GIVI

Department of Mechanical _ Aerospace Engineering
State University of New I_brk- Buffalo
Buffalo, NY  4e o-44oo

1. Introduction

Large eddy simulation (LES) of turbulent reacting flows has been the

subject of widespread investigation (McMurtry et al., 1992; Galperin and

Orszag. 1993; Menon et al., 1993; McMurtry et al., 1993; Gao and O'Brien,

1993: Madnia and Givi, 1993; Frankel et al., 1993: Cook and Rilev, 1994;
Givi. 1994: Fureby and Lofstrom, 1994; MSiler et al., 1996; Branlev and
Jones, 1997; Cook et al., 1997; Jim_nez et al., 1997; Mathev and "Chol-

let, 1997; Colucci et al., 1998; DesJardin and Frankel, 19981 Jaberi and

James, 1998: R_veillon and Vervisch, 1998; Vervisch and Poinsot, 1988).

Amongst these, recently Colucci et al. {1998) developed a methodology,

termed the "filtered density function" (FDF). The fundamental property
of the FDF is to account for the effects of subgrid scale (SGS) scalar fluc-

tuations in a probabilistic manner. This is similar to probabilitv density
function (PDF) methods which have proven to be very useful in "Reynolds

averaging procedures (Libby and Williams, 1980; Libby and Williamsl 1994;

O'Brien, 1980; Pope, 1985; Dopazo, 1994). Colucci et al. (1998) developed
a transport equation for the FDF in constant density flows in which the

effects of unresolved convection and subgrid mixing are modeled similarlv

to those in "conventional" LES, and Reynolds averaging procedures. This

transport equation was solved numerically by a Lagrangian Monte Carlo
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procedureand the resultswerecomparedwith thoseobtainedby direct
numericalsimulation(DNS)andby a conventionalfinite differenceLESin
whichthe effectsof SGSscalarfluctuationsare ignored(LES-FD).It was
shownthat in non-reactingflows,the first two SGSmomentsof the FDF,
asobtainedby the Monte Carlo solution, are close to those obtained by

LES-FD. The advantage of the FDF was demonstrated in reacting flows in

which its results were shown to deviate significantly from those obtained by

LES-FD but compare favorably with DNS data. The encouraging results

generated by FDF warrant its extension and application to more complex
flows. Further assessment of its predictive capability is also in order. The

primary objective in this work is to extend the FDF methodology for LES
of three-dimensional (3D) turbulent reacting jet flows. The FDF deals only

with scalar quantities; the hydrodynamic field is obtained via conventional
LES.

2. Formulation

We consider constant density turbulent reacting jet flows involving N,

species. The primary transport variables are the velocity vector ui(x_,t),
(i = 1,2,3), the fluid pressure p(x__,t), and the species' mass fractions

¢)_,(x__,t) ((_ = 1, 2, ..., Ns). These variables are governed by the conservation

equations:
Ou3

ox---T=o, (1)
Oui Ouiuj _ Op Orij

+ + j ' (2)

=. \ox + ozi/' J; =-r Ox---T' (4)

where u is the kinematic viscosity, F = _ is the molecular diffusivity and
Sc is the molecular Schmidt Number. Large eddy simulation involves the
use of the spatial filtering operation (Aldama, 1990; Moin, 1991)

(0(__,t))L = h_(_ - _')¢(_', t), d_'
OCp

(5)

where hs(x) denotes the filter function of width AH, and (¢(_x,t))L rep-
resents tile filtered value of the transport variable ¢(x_,/). We consider

0_o O¢_uj OJj_
0--7-+ Oxj Ozj + _"°' (3)

where ,.'o is the chemical source term. Assuming a Newtonian fluid and
Fickian diffusion,



LARGEEDDYSIMULATIONOFSCALARTRANSPORT..... 3

spatially & temporally invariant, localizedand "positive" filter functions
(Vremanet al., 1994). The application of the filtering operation to the
transport equations yields:

O(uj)L _ o (6)
Ozj

O(Ui)L O(ui)L(Uj)L O(p)L O(rO) L OTig

O----i--+ Oz: - Oxi + Ozj O.j (7)

O(O_,)L O(u:)L(¢o)r _ O(J_')L OM_

0----7--+ Ozj Ozj Ozj + (_o)z (8)

where T 0 = (uiuj> L - (Ui>L(Uj) L and M_ = (ujCa) L - (Uj)L(¢a)L denote
the SGS stress and the SGS mass flux, respectively.

The closure problem in LES of non-reacting flows is essentially one

of representing the unresolved terms Tij and Mj _. In reacting flows, the

problem is compounded by the presence of the chemical source term (Wo)L,
for which an additional model is required. For closure of the hydrodynamic
SGS stresses, the gradient-diffusion approximation is invoked:

TO -($ij/3)Tkk = -2ut(SO) L (9)

where (Sij>L iS the resolved strain rate tensor and ut is the SGS viscosity

modeled via the modified kinetic energy model (MKEV) (Colucci et al.,
1998):

ut = CkAH_I(U_>L(U_>L - ((UZ>L)L'((UZ)L)L,I, (10)

where u_ = ui - gti and//i is a reference velocity in the zi direction. The

subscript L' denotes the filter at the secondary level which has a char-

acteristic size (denoted by AH, ) larger than that of grid level filter. The

gradient-diffusion approximation is also used for closure of the SGS mass
fluxes (Eidson, 1985):

O(oo>L
MT=-F, _-_x: (11)

where Ft = ut/Sct, and Sct is the SGS Schmidt number and is assumed
constant.

The filtered density function (FDF) is utilized to represent the scalars

in a probabilistic manner. For the scalar array O(x.t) = [OI,a)2 .... ¢)N,],
tile FDF. denoted by fL, is defined as (Pope, 199-0j:

i ,,,(:':)d:,,

:[,_,._,::.t)]=,:[:,-_(:.,)j_:iI,_:,_,,-<,o(:,_)I. ::3)
o=I
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where 5 denotes the delta function and u, denotes the composition domain

counterpart of the scalar vector _0. The term s[_.o- _(x_, t)] is the "fine-

grained" density (Lundgren, 1967; O'Brien, 1980), and Eq. (12)states that

the FDF is the spatially filtered, fine-grained density. Thus, fL gives the

density in the composition space around x_, weighted by the filter h_. With

a positive definite filter (Vreman et al., 1994), fL has all the properties of

the PDF. For further development, it is useful to define the "conditional

filtered value" of the variable Q(x_, t) by

(Q(x_, t)l__) L - fL(_;x_, t) (14)

where (c_]_)L denotes the filtered value of a conditioned on /3. Equation

(14) implies

(i)

(ii)

(iii)

For Q(x_, t) = c,

For Q(z_., t) - (_(¢(x__, t)),

Integral property :

(Q(x__,t)l_L = c

(Q(x__,t)lC)L -- Q(_W) (15)

(Q(x., t))L = f*°_(Q(x_, t)tC_.)LfL(W_; x_, t)d¢_
,]-¢¢

where c is a constant, and (_(¢(x_.,t)) = Q(x_, t) denotes the case where

the variable Q can be completely described by the compositional variable

0(_x, t). These properties, in conjunction with the FDF, facilitate the cal-
culation of the moments involving the scalar variables via integration over

composition space,

OO(Q(x_,t))L = Q(__')fL(_!z;x,t)dt! '.
O0

(16)

The FDF transport equation is obtained by taking the time derivative of

Eq. (12) and making use of Eq. (3):

O.fL O(U2)L.fL O[(u/l_)L - (Ui>L]fL

Ot Oxj Ox_

O [/ OJ_ ) ] O[J.:c,(_(')fL] (17)
L

This is an exact transport equation for the FDF. The last term on the RHS
is due to chemical reaction and is in a closed form. The second term on

the left hand side represents the filtered convection of the FDF in physical

space and is also closed (provided (Ui)L is known). The unclosed terms are
the first two terms on the RHS which represents the transport of the FDF
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via SGS convection and the effects of diffusion in composition space. The

SGS convective flux is modeled via the gradient-diffusion approximation,

_ oft
[<ujl_C)L- <u_)L]f, = -l,z-:-_.

vzj
(18)

The closure for the conditional SGS diffusion is based on the linear mean

square estimation (LMSE) model (O'Brien, 1980), which is also known

as the interaction by exchange with the mean. or the IEM model (Borghi,
1988). Implementation of this model together with Eq. (18) yields the mod-

eled FDF transport equation:

0]L a[(-_}Lft] a I afL]0--7-+ Oz; -- az_ ,(r + rt)_-77z_j

O [_m(Oa -- (¢ct)L)/L] a[_ct(___)fL] (19)

In the second term on the RHS , flrn is the frequency of scalar mixing

within the subgrid and is modeled via tim = Ca(F+Ft)/A2H • This equation
may be integrated to obtain transport equations for the SGS moments. For

example, the first moment, (Ca)L, or the filtered mean is governed by:

a($o>m O(Uj)L(¢_}L a [ Ft)O<¢a)L]a--7-+ 0x_ = _ (r + _j + (_>L, (20)

3. Numerical Formulation

The numerical solution of the hydrodynamic and the scalar fields involves

a two step explicit procedure. The first involves the advancement of the

hydrodynamic variables and is accomplished via a compact finite differ-

ence scheme (Kennedy and Carpenter, 1994). The second involves the time

advancement of the FDF for which a Lagrangian Monte Carlo procedure

is used. This procedure is based on the idea of "equivalent systems" by

considering the random process X,(t).

dXi(t) = Di(X(t), t)dt + Et/2(X(t), t)dW,(t), (21)

where Di(X,t) is the drift vector, E(A_',t) is the diffusion coefficient and

Wi represents the Wiener-L6vy process (Karlin and Taylor, 1981). With
the equivalence:

E = 2(r + rt) D, _ (a,) L -4- o(r -4-['t) (22)
' 0X i
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the Fokker Planck equation corresponding to stochastic differential equa-

tion (21) becomes equivalent to the spatial transport equation of the mod-

eled FDF equation (19).

In the the numerical solution, the FDF is represented with a set of

scalars ¢(_'_)(..__Y(_)(t),t) assigned on the particles throughout the flow-field.

The location of the notional particles are given by X (n) and Eq. (21) is
integrated via the Euler-Maruyamma scheme:

X/'_)(tk+l) = X_'_)(tk)+ Dln)(tk)At + (El"_(tk)At)1/2_}'_)(tk), (23)

where Dln)(tk) = Di(X('O(tk),t), E('_)(tk) = E(X_n)(tk),t) and _'_)is a

random variable with the standard Gaussian PDF. This schemes preserves

the Markovian character of the diffusion process (Gardiner, 1990) and fa-
cilitates affordable computations. The coefficients Di and E require the

knowledge of the filtered mean velocity and the diffusivity (molecular and

SGS). These are provided by the solution of Eqs. (6)-(7) by a finite differ-

ence procedure and then is interpolated to the particle location.

The scalar composition of each particle changes due to the effects of

chemical reaction, and mixing (SGS and molecular). Both mechanisms are

implemented deterministically and the scalars evolve according to

de+ - -f_m(¢ + - (Co>L) + w_, (24)
dt

where O+ denotes the scalar value of a particle.

4. Results

Both FDF and LES-FD are employed for simulations of 3D turbulent round

jets under both non-reacting and reacting conditions similar to those con-

sidered in the experiments of Shea (1977). In the nonreactive case, the

configuration consists of a jet of ozone (03) diluted in nitrogen (N2) issu-

ing into a coflowing stream of N2. In the reacting flow, the surrounding fluid

consists of nitric oxide (NO) diluted in N2. The chemistry is modeled via
the one-step reaction of 03 + NO --+ 0: + NO2. The ratio of the reactants'

concentration to that of the carrier gas is of order O(10-4). With such di-

lute reactants, the effects of reaction exothermicity can be neglected (Shea,
1977). In reacting flow simulations via LES-FD, the SGS scalar correlations

are neglected.

The streamwise velocity at the inflow boundary is initialized with an

approximate top-hat radial distribution. The initial velocity is Uo in the jet,

and _'_ in the co-flow, with a velocity ratio of Uo/U_. = 4. The Reynolds

number based on the jet diameter (D) and the inner jet velocity is ReD =
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4,000. The space coordinates are z_ = Ix, y, z], where z is the streamwise di-

rection, and y & z are the radial/cross-stream directions. A mesh consisting

of 101 x 61 × 61 grid points in the z, y, z directions, respectively, is used to

cover a domain of size 8D x 4D x 4D. The ratio of the secondary filter size

to the grid filter size is AH,/A H "- 3. The values of the other parameters
are: Sc = 1, Sct= 0.7, Ck = 0.045, C_ = 2. No attempt was made to

find the optimum, or the "dynamically" determined (Germano et al.. 1991;
Germano, 1996) values of the model constants.

The simulation results are statistically analyzed via time averaging over

16,000 samples. In the FDF simulations, the filtered values of the scalar

quantities are determined by performing local averaging. The volume from

which an ensemble of particles is constructed is A_. By increasing AS, the

number of particles in the ensemble increases. This improves the statistical

accuracy but increases dispersion. First, LES results of the non-reacting

jet flow are considered in which the FDF simulations are conducted with

AE = 2AH. This size facilitates the use of fewer particles while still retain-

ing a large enough sample for reliable statistics. The instantaneous density

of the number of the Monte Carlo particles is presented in Fig. 1. This

figure provides a visual demonstration of the basic methodology and the

flow structure, as captured by the FDF. To establish the consistency of the

FDF, its results are compared with those of LES-FD. Shown in Fig. 2 are

the contour plots of the filtered ozone mass fraction at planes normal to the

streamwise coordinate. The results via FDF are very similar to those ob-

tained by LES-FD: the latter contain slight numerical oscillations which are

not present in the Lagrangian Monte Carlo simulations. The comparison

between the filtered values as predicted by FDF and LES-FD is quantified

by, performing a linear regression analysis of data at all the points. This

analysis yields a correlation coefficient of 0.99 between the two sets of re-

stilts which indicates a very good agreement between the LES-FD and the
FDF in predicting the filtered mean values.

The radial distributions of the time-averaged, filtered, normalized ozone

mass fractions (]'_._)L = (YO3)L/(_t'O3)L(X ---- y m z ---- 0) are shown in Fig.
3. In the non-reacting case. expectedly, the FDF results agree well with

those via LES-FD. Both simulations predict a similar rate of decay for
the center[ine values of the mass fraction as tile flow evolves. In the react-

ing case, however, there is a significant difference between the results of

the two simulations. It is noted that LES-FD predicts a much larger rate

of reactant conversion in comparison with FDF. This difference is due to

the neglect of the SGS scalar fluctuations in the LES-FD. This trend was
observed in all the cases considered and is consistent with that observed

in Reynolds-averaged simulations (Bilger, 1980). An attempt was made to

compare the results with experimental data of Shea (1977). But there are
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not sufficientdetaileddata reportedin regardto the initial conditionsin
this experiments.Also, becauseof numericalconcernssomeof thesimula-
tion parametersaredifferentfrom thoseconsideredexperimentally.Work
is in progressto generateDNS data for 3D, turbulent reactingjet flows
with simplechemistryschemesof the typeconsideredhere.Suchdataare
neededfor further assessmentof themethodologybeforeit is implemented
for simulationsof morecomplexreactingflows.

Although the FDF methodologyis presentedherefor isothermal,con-
stant density,reactingflowswith asimplekineticsscheme,theextensionto
variabledensityflows,with exothermicreactionsimposesnoseriousmath-
ematicaldifficulties(Jaberiet al., 1999). For LES of variable density flows,

it is convenient to use the filtered mass density function (FMDF), denoted

by FL, defined as

(25)

where p is the fluid density. The integral property of the FMDF is such
that

FL(_;z_,t)dO= co p(x_',t)h,(_- x_)dx'= (p(x_.,t))L. (26)

Jaberi et al. (1999) developed a transport equation for the FMDF and

applied it for LES of several reacting flows. All the results as compared

with DNS and laboratory data show significant advantages over LES-FD.

With inclusion of efficient numerical integration routines for the treatment

of complex chemistry mechanisms (Pope, 1997), it is conceivable that LES
of reactive flows with realistic chemical kinetics may be conducted for en-

gineering applications in the near future. In this regard, the scalar FDF
methodology is attractive in that the present Monte Carlo solver can be

used directly in available CFD codes. Similar to PDF methods, the closure

problems associated with the FDF (and FMDF) are the correlations in-

volving the velocity field (such as SGS stresses and mass fluxes). This may
be overcome by considering the joint velocity-scalar FDF (FMDF) simi-

lar to that in PDF methods (Pope. 1994b). This issue is currently under
investigation.

The computational requirement for FDF simulations with 2 × 106 parti-

cles is about 2.5 times that of LES-FD. This overhead appears tolerable in

view of the attractiveness of the methodology. Also. the computational re-

quirements for FDF is significantly less than that of DNS. But the range of

flow parameters (such as the Reynolds and the DamkShler numbers) that

can be considered by FDF is significantly larger than can be treated by
DNS. and the results are more accurate that those by LES-FD. Colucci et
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al. (1998) and Jaberi et al. (1999) report a comparison of the computational

requirements of LES-FD, FDF and DNS for several flow configurations.
This comparison could be made only in flows for which DNS was possible,

i.e. low DamkShler and Reynolds numbers. At higher values of these param-

eters, the computational cost associated with DNS would be exceedingly
higher than that of FDF. Thus for practical flows for which DNS is cur-

rently impossible, the FDF would be a good alternative. Several means of

reducing the FDF's computational requirements are possible and should be

considered. These could be useful in future applications in complex flows.

The FDF method will benefit from ongoing and future improvements in

PDF and other LES schemes (Pope, 1994a; Subramaniam and Pope, 1997;

Pierce and Moin, 1998) from both modeling and computational standpoints.
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Figure 2. [nstantaneous filtered mean ozone mass fraction contours at streamwise

planes: (a) LES-FD, x/D = 2.5; (b} FDF, x/D = 2.5; (c) LES-FD, x/D = 7.5;(d) FDF,
x/D = 7.5.
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Appendix IV

Velocity Filtered Density Function for Large Eddy Simulation of Turbulent Flows

Please Note: The materials provided in this Appendix (IV) are very preliminary and work is still

in progress on this portion of our activities.



Velocity Filtered Density Function for Large Eddy Sim-
ulation of Turbulent Flows

I Introduction

Modeling of the Sub-Grid Scale (SOS) correlations in large eddy simulations (LES) of turbulent

flows is continuing to be an active area of research in fluid dynamics. 1-n The most prominent

model has been the Smagorinsky eddy viscosity closure 12which relates the unknown subgrid scale

Reynolds stresses to the local large scale rate of flow strain. 13 This viscosity is aimed to provide

to a zeroth order approximation the role of mimicking the dissipative behavior of the unresolved

small scales. The extensions to "dynamic" and "mixed" models 1_19 have shown some improve-

ments. This is particularly the case in transitional flow simulations where the dynamic evolutions

of the empirical model "constant" result in (somewhat) better predictions of the large scale flow fea-

tures. More recent investigations and developments for more accurate SGS closures 2°-27 imply the

resolution of subgrid transport equations. The motivation in these cases is the desire to reduce the

dissipative effect found in fixed length scale approaches and to predict the now famous problem of

"back-scatter" by evaluating a proper velocity subgrid scale. Here again the "dynamic" approach is

feasible to evaluate the required closure coefficients. 23 Two classes emerge in the subgrid velocity

scale approach. The one equation type of approach investigated by Menon et al. 20.21 solves for the

subgrid kinetic energy, while the second one originally proposed by Deadorff et aL 25 and studied

by Fureby et al. 27 directly solve for the SGS transport equations. The latter model is theoretically

more attractive as it has the ability of resolving anisotropy in the SGS.

In a recent study Colucci et al. develop a new methodology for LES of turbulent reacting flows. 2s

In this new approach the definition of "Filtered Density Function ''2s'29 (FDF) and "Filtered Mass

Density Function ''3° (FMDF) are defined for the scalars and allow an exact representation of the

chemical source terms appearing in the LES equations of turbulent reacting flows. While the ap-

plicability of the scalar FDF for LES of chemically reacting turbulent flows has been successfully

demonstrated by Colucci et al., 2s'3° the hydrodynamic part of the problem was limited to conven-

tional Smagorinsky hydrodynamic closures lz and of now well known limitations. 31'32

The objective of the present work is to derive a higher order type of hydrodynamics closure through



the modeling of the joint-velocity FDF and to demonstrate its applicability by providing results

based on its implementation for LES of turbulent flows. Assessment of the methodology is obtained

at first through consistency simulations as explained later. Only the FDF of the joint-velocity vector

is considered here; probabilistic treatment of the velocity-scalar fluctuations is postponed to future

work but is the long term goal of the present investigation.

II Formulation

The primary transport variables for the mathematical description of incompressible (unit density)

turbulent flows are the velocity vector ui(x. t) (i = 1.2.3) and the pressure p(x. t ). The equations

which govern the transport of these variables in space (xi) and time (t) are

_ 0°

/)xi

igu , igu,uj Op Oa,, (1)
--+ _ +_
Oi &r , Ox _ O.r , "

Assuming a Newtonian flow, the viscous stress tensor a,j is represented by

= (0,,or,. I,\_+_ . (2)

where t, is the fluid viscosity and is assumed to be constant.

Large eddy simulation involves the use of the spatial filtering operation 33

_ X.
./(x./J I = ll x'./)all x'. x)dx'. (3)

where _d denotes the filter function, i./( x. / ))i. represents the filtered value of the transport variable

/, x. / 1, and .f' = .f - ,',.f) z. denotes the fluctuations of/ from the filtered value. We consider spa-

tially & temporally invariant and localized filter functions, thus .d( x'. x I = (;l x' - x j with the

properties, 33 (,'f x I = (,'! -x i, and [_" (,h x Jdx = 1. Moreover, we only consider "positive" filter

functions as defined by Vreman et al. 34 for which all the moments [._",.," (,'i .r )d:r exist for m > 0.



Theapplicationof the filtering operation to the instantaneous transport equations yields

(4)

where rL _u,. % i = <u, ,, )L -- (:U, )L Ii% )L denotes the "generalized subgrid stresses" as defined by

Germano. 14

III Deterministic modeling

In LES the closure problem is associated with "rL(m. uj ).2 Here, this term is modeled with a prob-

abilistic and deterministic closures. The former is based on the velocity filtered density function

and is discussed in the next section. For the later, several existing closures are given and used for

comparison with the VFDE

The most famous deterministic LES model is probably the Smagorinsky model x2 which assumes

equilibrium between the energy production and dissipation rates in the small scales. The model

reads, 12

.)

7L(u,.% =-') l.', _," +-kb_,
.... o ;_ "

?)(, ,IL. 1 __Hl"')l ÷ ,
"_'_t = _ O,r _ ?).r, J "

I,_ =(,. 37.3'.

(s)

¢"_'1.1%'tj(', j is a constant of order 0.01, S = and ...XL is the characteristic length of the LES filter.



A moreappropriateclosurewasproposedby Menonet al. z°.:l in which the SGS are given by,

7LlU.. _I, ) = --_') t/, _"

u_ = 6',1 AL vk.

0 ?) 0 f

[("+

_L"

Oh' ] a,i , ) L (6)

J - o.,'---7-- --

and for which the introduction of k = 1/2 rLt uk. u_.) as a subgrid velocity scale removes the equi-

librium assumption allowing more realistic flow predictions.

For our purpose we are interested in the transport equation of the SGS stresses,14

0 0 0T,jk
H,_+ P,_- %. (7)

to allow resolution of the anisotropy present in the small scales. In this equation, T,, _ = rL ( u,. u j. u_.) --

u ' [7"L( ,,. u: )] is the subgrid turbulent transport tensor where r/. ( u,. (,_. u _.) = (u, u, u <.) L -- ( u ,) L TL ( _1.,. U_.) --

( U ) L TL ( U, . U _ ] -- ( tt ;,. ) L 7L ( 0,. tl , ) -- ( tt, ) L ( U _ ) L ( U h ) L .14 The other terms are, the subgrid pressure-

_" _" I, the subgrid production rate tensor,velocity scrambling tensor, H .... = 7-i.(u,. _ I + rL( u._. _,_.--S,

[' = ---L(" .,_ ) " " rL(, u_ :_tu_?L andthesubgfiddissipationratetensor,_ = "2urL( '_''' "_'

• At this closure level a deterministic approach requires models for -i (v,. ,,. u<_), fl< and _,,.

Consistent with the models used in Reynolds averaged (RAS) calculations; the subgrid velocity-

pressure scrambling tensor and anisotropic part of the subgrid dissipation rate tensor are combined

and modeled via a Rotta type closure. 3_ The resulting model is, z5":7

: [ : 1-rI,, - (_,: - ._ <% t = - (', _. r_.i,,. ,,, ) - .q z. ,,,, . (8)

I
where _. = -:-_is the subgrid mixing frequency, L. = . rL (, . ,, ) is the subgrid kinetic energy, and

I _
: = : -. is the subgrid kinetic energy dissipation rate. The dissipation rate is related to the charac-

teristic length of the filter, A L, and the subgrid kinetic energy according to the same expression as

in Eq. (6), 25'z7

The third order term, 7-/_ .. v . ,; ), needs also to be modeled in a deterministic approach which is



• "_ "7
done using,--'"

7t(u,.,j. u_.) = - ('_2 AL
0

(9)

All the coefficients ('_, 6":, (-', _.... have to be provided externally or may be calculated via dynamic

methods. 14-18 Note also that more elaborate closures similar to those used in RAS could be used

but they are beyond the scope of the present work.

IV The velocity filtered density function (VFDF)

The key point in this formulation is to consider the velocity vector U (x. l ) in a probabilistic manner.

For that, we define the "velocity filtered density function" (VFDF), denoted by PL, as

PL(v: x. t) - o[V.U(x'.t)]G(x'- x)dx'.

3

_o[v. U(x. f)] = _[v-U_x._)]- 1-I_[_; - ,,,(x t)]
I=1

(10)

where e denotes the delta function and V is the velocity state vector. The term _o[V: U(x. 1)] is

the "fine-grained" density, 36,37 and Eq. (10) implies that the VFDF is the spatially filtered value of

the fine-grained density. Thus, PL gives the one point, one time density distribution in the velocity

space of the fluid state weighted by the filter (;. With the condition of a positive filter kernel, _ ft.

has all the properties of the PDF. 37

For further developments, it is useful to define the "conditional filtered value" of the variable Q(x. ! )

by

i7,) (3_x'. t l,_,[I". [:_ x'./I] (,'c x' - x _ax'.
_()lx./)1I')I- (11)

I'/ll"x. II
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where (or _i_L denotes the filtered value of ,_ conditioned on d. Equation (11) implies

(ii

(ii;

For O(x.t) = c.

For Q(x. t) - O.(U(x.t)).

Integral property :

(O/x.t)[V)L = c.

!Q(x.t)Iv)L = 0(v). (12)

(O_x. t))L = (Qtx. tij¥:)L&(V:x, ttdV.
o(

where c is a constant, and QtU(x.t)) = Q_x. t)denotes the case where the variable Q can be

completely described by the variable U (x. t ). Note that for simplicity the following abbreviation

is used: iApV)L -- (.41U(x. t) = V)L. From these properties it follows that the filtered value of

any function of the velocity variable is obtained by integration over the velocity space

E_
(Q(x. t))L = Q(v)PL(V. x. t)dV.

c_
(13)

To develop a transport equation for the VFDE the time-derivative of Eq. (10) is considered

OPc(V:x.t)

O! _ Ou,ix'.t) Oe[V.U(x'.t)] a(x' x) dx'- .._ Ot Of

0 f _ igu:lx'.t) [V.U(x'./)J G(x' xldx'.- 0I ; -__ 0t _o

This combined with Eq. (11) yields

OPcll"x./l_#/ i)l_) [(#u'll'>#/ : l't'V:x./)].

Substituting Eq. (1) into Eq. (15) yields

i)l': i l: x./I

r)t

in which the convective term can be represented in the form

[< >]# i)u,,11. I'll_"x.t) = -Ii
()_ " ().l , z O.r,.

(14)

(15)

(16)

(17)
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Substitutionof Eq. (2) for the conditional diffusion and some algebraic manipulations yield,

The conditional filtered values of the pressure gradient and dissipation rate can be further decom-

posed into resolved and deviatory components from the mean (filtered) values. It is useful to adopt

the following decompositions,

( Op ) O(p)L pL _ [(._z lV) O(p)L pL"7z. PV PL - o.r,. ' Oz,
L L

(_)_ Ou, Ou, ,v PL = _,O(u'>LO(u')c PL +

so that Eq. (15) can be expressed as

DPr. c) O(p)L OPt 02PL O(Ui)L O(.,}t. O'2Pt.
- Jill. - (,_)L)PL] + +,'-- "

D/ O.r_. O:r, Of; O.r_-O,r_. Oa'_. O.r_. Ol i#l.]

I(( ) )1 o,[((o,,,o,,) ]?J i')l' if" i-)(]')L PL I, tl" -- l., " ' PL •

01 0_--7 iz. i).r t)l ;01 O.r_. _ _ O.z_ 0,__-
(20)

where / _u _.,,1. ' denotes the filtered material derivative.
1); -- ,!t ' ?.r_

Equation (20) is an exact transport equation for the joint-velocity FDE The first term on the right

hand side represents the deviatory/subgrid convection of the VFDF in physical space and is closed

(provided that _, _.___is known). The second term corresponds to the convection in the velocity space

due to the resolved pressure gradient. The third term is the diffusion of the VFDF in physical space

due to the molecular effects, and the fourth term is the diffusion in velocity space due to the resolved

dissipation rate. The unclosed terms are associated with the last two terms on the RHS of Eq. (20).

These terms represent the convection in velocity space by the unresolved subgrid/deviatory pressure

gradient and the diffusion in velocity space by the unresolved subgrid/deviatory dissipation rate.

The subgrid pressure gradient and the subgrid dissipation rate are modeled via the generalized [,angevin

7



model3s-4o

01 " _ i I.," L Oa', PL

The advantage of the decomposition in Eq. (20) and the subsequent model in Eq. (21) is that they

yield results "nearly" similar to those in "conventional" LES for the first two moments of the VFDE

To show this mathematically the moment equations are evaluated by integrating Eqs. (20 & 21) in

velocity space. These moment equations are read as,

a(u,)L
-- O.

OaG

Oi, )L + O_(Uj)L OrLtU,._,j) (22)

Ot Ox, Oxj OxiOx, Ox,

,9 b-_(,,,.,,,._,,.)-,,_[T_(,,,.,,,)]]_[TLI,,,., )] + [(,,,.)L:-Li,,,. ,,:)] - o.,.,.

,G,_.TL{U.,.uA.)+G3_.TLlU..uA.)_ rLIU,.U_.) O(Uj)L rL(U,, u_.)
' O,Fk

=('o-(',,.

O(,,,)l.

(23)

The advantage of the VFF approach is seen in Eqs. (22,23) where the subgrid stresses appear in

a closed form without the need of solving subgrid transport equations. Moreover, the third order

quantities, :L! ",. " • ,_ ), appears as a consequence of the VFDF model and do not need to be mod-

eled separately as in a deterministic closure, i.e. Eq. (9). The accuracy of the subgrid stresses as

obtained from the modeled VFDF transport equation for Eq. (20) need nonetheless to be validated.

To make the second moment equation derived from the VFDF transport equations more similar to

the one derived directly from the instantaneous equation (7), we define (;, as, 41

• (I

(", =--" - (,,'" =----_',, (24)
2 1 ' "_
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With this, theresultingtransport equation for the modeled VFDF becomes,

(25)

There are two constants in Eq. (25). While the first one, C., is expected to be filter size dependent, 26

the second one, 6"o, is equal to 2. l for very high Reynolds number flows according to Obukhov-

Kolmogorov hypotheses. 42"46 For finite Reynolds number flows the value of Co can vary between

0 and 6 based on theoretical works and RAS simulations. 4°'47"49

V Monte Carlo solution of the VFDF

The solution of the V'FDF transport equation (Eq. (25)) provides all the statistical information per-

taining to the velocity vector U (x. t i. This equation can be solved most effectively via the Monte

Carlo schemes which can be utilized in both Eulerian 5° and Lagrangian _,51 contexts. The advan-

tages of Lagrangian numerical methods in reducing the amount of numerical diffusion are well-

recognized. 52-57 The basis of the Lagrangian solution of the VFDF transport equation relies upon

the principle of equivalent systems, s7.41 Two systems with different instantaneous behaviors may

have identical statistics and satisfy the same VFDF transport equation. In the Lagrangian Monte

Carlo procedure each of the particles obeys certain equations which govern its transport. These

particles undergo motion in the physical space by convection due to the velocity vector and diffu-

sion due to the molecular viscosity. The evolution of the velocity vector is governed by the cumu-

lative effects of the local pressure gradient and velocity dissipation rate at the resolved and subgrid

scales. The spatial and velocity diffusion of the particles are represented in a stochastic manner by

the following system of stochastic differential equations (SDE) sT.5s'6°

d.\,l/t = I),(X(/).VI/_:/

dl,it_ = 3I (XIIJ.ViI!:t

- I,,(Xi/_.Vi/_:/

,I/- l¢tXi/).Vi/):/)dllT(/).

d/ + l:iXi/i.Vil):l)dll/(ll

dll/(/i.

(26)

9



whereX is the Lagrangian position of a stochastic particle with velocity I. The coefficients 1)

and 3L are known as the "drift" in spatial and velocity coordinates respectively. B and E are the

"diffusion" coefficients for physical and velocity spaces respectively, and II '_ and It "/ denote inde-

pendent Wiener-Levy processes. 61 The tensor F,: represents the dependency between the velocity

and physical spaces for this process.

The corresponding Fokker-Planck equation for this Lagrangian process is,

Of" 0
[(D_.IV, X)./"] -

Ot ?)x _.

+

4-

1 8)2 -
# [(.IL. II,_ X} f'] 4- (B2[V, X!/":

Oli " 2 #x_,Ox_, ' J

1 02
[(E_IV, X)f "] 4- [(F, BIV, X).f']

2 _)ll-a_i. 0x_01;

1 i92

•2 Oi ;Oi, [(F'_FjkIV' X)f'].

(27)

where .f" = ,/" ( V. X: t ), is the PDF of the process, (.4) is the "expected value of A", and (.41 V, X) =

(.4 [U ( t ) = V..V ( ! ) = X). The PDF of X, .f_, is obtained by integrating Eq. (27) over the velocity

space,SS, 6z

?)fTa___T+ _ [(D_.tX}.f__] - "210x_.&r_.i92[(B:[X).f;] . (28)

Proper initial and boundary conditions for Eq. (28) ensures that .f; ( X : l ) = ('st (non zero). If this

is satisfied one can divide Eq. (27) by/;: and derive the Eulerian transport equation. 6°.63

By comparison of the Eulerian transport equation corresponding to Eq. (26) with the modeled VFDF

transport equation (25) one can determine a set of appropriate values for the coefficients. For ex-

ample,

?),P I i_:: " I
.11 _ 2t' (,', II --(",_1,1. 1) = I .

O,r, O.r_ O.r_ ' '

-- " -- i)(.,)t.
t3 = ,_"2t,. E =_ \/(',,-. I(. _- \'Or (,,)c =- (l').

i) r

(29)

is one convenient set of relationships but is not unique. With the equalities given in Eq. (29) .f;

is non zero as it should be, if the proper initial and boundary conditions are applied. Note that the

diffusion coefficient, H = \ ._,¢--S,is selected consistently with the one used by Einstein, 64 Wiener 65

and I.,6vy 66 to describe Brownian motions. Thus the chosen SDE's which represent the transport of

10



the modeled VFDF are

dX it) = U,(t) dt + _'2z, dll31tl.

dU,(t = O(p)L + 2uO_(u,}L
Ox, Oa'_.Ox_.

dlli,3tt)

+ o,.; (u itl - <.;>L)]
/,--

dl + \lCoz dll"lt i (30)

This stochastic system reduces to the one developed for R,AS calculations _,67 when the filter oper-

ation is assimilated to an ensemble averaging operation.

It has been shown by Pope 37 that the stochastic system fields identical statistics as the fluid particles

(to a first order approximation in time) if and only if the time increment, dr, is much smaller than

the characteristic time of the large scale turbulent motions, r, and much larger than the Kolmogorov

time scale r_:

:-_,<< d! << r. (31)

Under the previous constraints and to a first order approximation in time, the statistics obtained

from the stochastic process evolve as:

.:'d.V = iU,;L dl. ((1[

{d.V,d.V ' = 2t, _', dt. dl

. 01 u i /
2t, ------:-" dlidA.d(, =

f').l"

aU,) 2,,a;<.,>s.]= 0,, " _-_xTJ dt

,ll" : = 21, ' ........ dl-C'om ,dt. (32)

In the numerical implementation, the VFDF is represented by a set of Monte Carlo particles, each

with a velocity vector U(_I(X_"_t t I. / I and a Lagrangian position vector X In_. The simplest means

of simulating Eq. (30) is via the Euler-Maruyamma approximation 6a

.\"l/_..,-i) = .\" I; , -- /)tl, i_.XI-- /7"11, I(_-Xt) i''-'''_,,(Is,.).

["ll_+ t-= [" I,,--.ll"lljikl- /i'"(li. itAt)l "£"lll,.t

-- /"'it, I_ll I':,'' l_l.

(33)

where l)iI; i = I) l X"_il t. rc"" Jit, i:lj, l]"lt, 1 = t¢iXi"J_l, i. Ul"ll, ):1),... andc,,(l_}.(,,,(l_.)
g
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are samples from two independent Gaussian white noises at time t _. This formulation preserves the

Markovian character of the diffusion processes 69"-71and facilitates affordable computations. Higher

order numerical schemes for solving Eq. (30) are available, 68 but one must be very cautious in using

them for LES. zs Since the diffusion term in Eq. (26) strongly depends on the stochastic processes

Ut t t and Xi/I, the numerical scheme must preserve the It6-Gikhman 7",73 nature of the process.

Equation (33) exhibits this property.

The LES of the first hydrodynamic moments is conducted with the "compact parameter" finite dif-

ference scheme of Carpenter. TM This is a variant of the McCormack 75 scheme in which a fourth

order compact differences are used to approximate the spatial derivatives, and a second order sym-

metric predictor-corrector sequence is employed for time discretization. The computational scheme

is based on a hyperbolic solver which considers a fully compressible flow. Here, the simulations

are Conducted with a low Math number (M ._ 0.3) to minimize compressibility effects. The proce-

dure involved in the finite difference discretization is dependent of the Monte Carlo solver through

the SGS. All the finite difference operations are conducted on fixed and equally sized grid points.

Thus, all the filtered values of the hydrodynamic variables are determined on these grid points. The

transfer of information from these points to the location of the Monte Carlo particles is conducted

via interpolation. Second-order (oilinear) interpolation scheme is considered, as no significant dif-

ference in statistics were observed when higher orders were used. 29

The SGS necessary to the finite difference LES solver (or higher order moments of the VFDF) at

a given point are estimated by consideration of particles within some volume centered at the point

of interest. Effectively, this finite volume constitutes an "ensemble domain" characterized by the

length scale _ l: in which the VFDF is represented discretely by stochastic particles. This is neces-

sary as, with probability one, no particle will coincide with the point as considered. 4° Here, a box

of size __kj is used to construct the ensemble mean variances and covariances of the velocity vec-

tor from which the ensemble mean values are subtracted to yield the SGS at the finite difference

nodes. These values are used in the finite difference LES solver of Eq. (4). The subgrid kinetic

energy dissipation rate and the subgrid mixing frequency are also obtained from the SGS. From the

numerical standpoint, determination of the size of the ensemble domain is an important issue as it

determines the time evolution of the LES solver through the values of the SGS. Ideally, it is desired

to obtain the statistics from the Monte Carlo solution when the size of sample domain is infinitely

small (i.e. __xj _ _j) and the number of particles within this domain is infinitely large. With a finite

12



numberof particles,if _1r is too small there may not be enough particles to construct the statistics.

A larger ensemble domain decreases the statistical errors, but may increase the dispersion errors

which manifest themselves in "artificially diffused" statistical results. This compromise between

the statistical accuracy and dispersive accuracy as pertaining to Lagrangian Monte Carlo schemes

implies that the optimum magnitude of .3 z cannot, in general, be specified a priori. 37 This does not

diminish the capability of the procedure, but exemplifies the importance of the parameters govern-

ing the statistics. A better understanding of the sample size impact is obtained through consistency

simulations as illustrated in the results section.

VI Results

VI.1 Flows simulated

In this section results are presented to demonstrate the effectiveness of the VFDF method. Spatially

developing jet configurations are considered for the LES simulations. 2D planar jet simulations are

used for consistency assessment of the previously described methodology and for comparisons with

existing closures. 3D round jet simulations allow validation of the new approach and pre-existing

closures via experimental data.

All of these flows are dominated by large scale coherent structures. The formation of these struc-

tures are expedited by imposing low amplitude perturbations at the inflow boundary. In the figures

presented below, .r. n correspond to the streamwise and cross-stream directions, respectively. In

3D, - denotes the spanwise direction. Finally r = \.t/: - :" is the radial direction. The size of the

domain in the 2[)jet flow is 0 _<, ,_ 1 11). -:LSI) ,_< ,/ __ :I.Sl). The ratio of the inlet jet velocity

to that of coflowing stream is kept fixed at 0.-_ for the consistency analysis and 0.2 for comparative

results between closures. For the :ID jet the domain consists of a rectangular box of dimensions

1)_ _ ,--_111) -:L.-)/) _-_v _<:3.3/). -:l.:')l) _..... "_ :_..-_1).

All the flow configurations are simulated via LES. The procedure in LES is based on the Monte

Carlo solution of the modeled VFDF transport equation (Eq. (25)) for the velocity vector augmented

by the finite difference solution of the filtered hydrodynamic modeled equations (Eqs. (4)). In the

presentation below, these results are identified by the abbreviation VFDE In addition, another LES

is conducted in which the modeled transport equations for the filtered velocity and the generalized
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subgridstressesaresimulatedwith the finite difference scheme. In these simulations, the hydro-

dynamic solver and the models for the SGS are consistent with those employed in the VFDF (i.e.

Eqs. (7), (8) and imposing Eq. (24)). The effects of the turbulent subgrid transport, ra( _,. ,j. u_ ),

are obtained from the VFT)F in the case of the consistency simulations. The results based on this

procedure are referred to as LES-FD. No attempt is made here to determine the magnitudes of the

constants appearing in these models in a dynamic manner. 14 However, different values are consid-

ered for ('o in order to compare the predictions obtained from the VFDF with other deterministic

closures.

VI.2 Numerical specifications

The primary parameter is the flow Reynolds number (Rc). All finite difference simulations are con-

ducted on equally-spaced square grids (Az = Ay = A-'(for 3D ) = A). Since the size of the com-

putational domain is fixed, the number (and the size) of the grids depends on the type of simulation

being conducted.

The VFDF and LES-FD runs are conducted on grids coarser than those in DNS. Unless otherwise

specified, the LES resolutions in the consistency simulations of the planar jet are 201 × 10t and

t ".,1 ,: !_i, with/3'_ = 4. 000 (based on the inlet jet diameter). The planar jet configurations used

for comparisons of the various closures use 161 × SI points with th = 10. 000. The 31) grid is

composed of 1(il _- _ 1 , _ 1 grid points for a Reynolds numbers of t_ = 10.000 based on the inner

stream velocity and jet diameter. A low speed coflow corresponding to a 0." ratio with respect to

the inner flow is maintained in order to stabilize the solver.

When required (inlet conditions, DNS) a top-hat filter function 33 of the form below is used

I-i '(,'(X' -- X! = (,'i.r -- .r

_'l .I_ [
--,1 I _--

I.I 't -- .l'ji :, "A--.c.--
" 2

(34)

in which V/, denotes the number of dimensions, and .A,, = 7.A. No attempt is made to investigate
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thesensitivityof theresultsto thefilter function 34 or the size of the filter. 76

In VFDF, the Monte Carlo particles should initially be distributed at I = 0 throughout the domain.

For the jet simulations the particles are supplied only in the region -1.75D __<.u _< 1.75D in 2D.

This procedure seems to be sufficient to yield accurate results, at least for the velocity ratios under

study. The particle density is monitored at all times to ensure an approximately uniform particle

density through the domain of interest.

In the spatial jets, new particles are introduced through the inlet boundary at a rate proportional

to the local flow velocity and with a compositional makeup dependent on the V, (and z in 3D) co-

ordinate and yielding identical statistics regardless of the ensemble domain size .-XE. The density

of the Monte Carlo particles is determined by the initial number of particles per grid cell (NPG)

of dimension & x &I x & ). The magnitude of .VPG is varied to evaluate its affect on statistical

convergence of the Monte Carlo results. This assessment is demonstrated in 2D simulations of the

spatially developing planar jet. The simulations of 3 D spatial j et are based on .V P G = 4 0. The size

of the "ensemble domain" in the VFDF simulations is also varied in order to quantify its influence

on the statistical convergence. The following sizes are used, -3E = 2_X. __k..__k/2in the consistency

simulations and --kE = ._k otherwise. The number of sample particles used to construct the VFDF

statistics is thus controlled by the values of .VPG and -XE.

An additional parameter which influences the numerical accuracy is the magnitude of the incremen-

tal time step. The stability criterion for the finite difference scheme requires ('FL < 1, v/'3 TMand

is more stringent than the criterion for the Fourier number. The effect of the time increment on the

accuracy of the Euler-Maruyamma scheme is not investigated here. The .5t value (CFL numbers)

equal to the value from Colucci et al. za is adopted.

The simulated results are analyzed both "instantaneously" and "statistically." In the former, the

instantaneous contours (snap-shots) of the vorticity and scatter plots of the redundant variables are

considered. In the latter, the "Reynolds-averaged" statistics constructed from the instantaneous data

are considered. In these spatially developing flows this averaging procedure is conducted via sam-

pling in time. All Reynolds averaged results are denoted by an overbar.
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VI.3 Consistency of VFDF and convergence of the Monte Carlo procedure

The objective of this subsection is to demonstrate the consistency of the VFDF formulation and

the convergence of the Monte Carlo simulations. For this purpose, the LES results via VFDF and

LES-FD are compared against each other in a planar-jet configuration under different conditions.

Since the accuracy of the finite difference procedure is well-established (at least for the first order

filtered quantities), this comparative analysis provides a good means of assessing the performance

of the Monte Carlo solution of the VFDF and allows identification of the governing parameters. For

simplicity and a clear understanding of the methodology, the model is simplified by neglecting the

spatial diffusion of the VFDF due to the molecular term. This assumption results in the neglect of

the molecular transport in the SGS equations (Eq. (23)). The Generalized Langevin model in turns

models the expression,

This simplification is equivalent to an assumed high Reynolds number at the subgrid level since only

Eqs.(22) are fully recovered. This approximation reduces the degrees of freedom of the stochastic

process. The new equivalent stochastic system therefore reads,

d.V /,=lltldt

[( 0(p_t
dtt/i =

_').1" (-)(°'_/v!1)().r_ _ (/" (/,([) -- It/ )1.)] d/ + V/( '0:: dll_"(/).

(36)

and has statistics evolving (to a first order in time) as,

(d.\"} = lu,;l, dl. ,,/l, = dl.

(d.\',d.\'j = 0.. (tit',all, = (',:: ¢,, dl. t:d.\ dl ,) = O.

(37)

The third order term in Eq. (7), ft. ( u,. ,,. I,_ ,, is obtained from the VFDF and used into LES-FDY

This ensure a fully consistent approach between LES-FD and the VFDF. The model's coefficients

are taken to be _ ',, = 1_s and ("_ = 1. 77.78 Eq. (36) model could be used for LES in particular cases

but the reader has to recognize that the proper behavior of the VFDF is not fully recovered. 79

In Fig. 1, results are presented of the LES of the spatially developing planar-jet. Shown in the figure
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is the instantaneousvorticity contourplotsvia (a)VFDF and (b) LES-FD. This figure provides a

simple visual demonstration of the consistency of the VFDF as the results via the particle method

are in agreement with those obtained by LES-FD. In fact, the Monte Carlo results are even more

attractive due the Lagrangian nature of the solution procedure. While the LES-FD results suffer

from slight over- and under-shoots, there are no such errors in the Monte Carlo scheme. The vi-

sual agreement is confirmed by the scatter plots of the redundant variables (u) L and _t.) L shown

in Fig. 2(a) and (b). The correlation and regression coefficients for the first filtered moments were

found to be rather insensitive to .3z (±0.StX) as seen in Tables (1) and (2).

Another rigorous means of assessing the VFDF results is via consideration of the Reynolds aver-

aged results. Figure 3 shows such results in which the sensitivity of the VFDF predictions to sev-

eral parameters is assessed. Figure 3(a) shows the comparison of VFDF and LES-FD results for

the cross-stream variation of (u)L at a distance of 7.5 inlet diameters from the inflow boundary.

The results are qualitatively identical at all y locations in the flow field. Several values of .3E are

taken under consideration for a unique number of particles per ensemble (.V PG = 10.4 0.160). It

is shown that the first filtered moment of the VFDF agrees very well with those obtained by LES-

FD, even for large __kz values. The differences between the VFDF and LES-FD results are more

significant in Fig. 3(b) where the stream-wise variation of I,, L is shown for several values of ..-kE.

This figure also indicates that the difference between VFDF and LES-FD predictions diminishes as

._k/ decreases.

The differences observed in the first order filtered quantities are directly correlated to the contri-

bution of the subgrid second order filtered moments. Significant differences observed at various

instantaneous times between the subgrid moments from LES-FD and from the VFDF would result

in distinct evolutions of the flow field in time. It is therefore necessary to have a better understand-

ing of the effect of --kt on the subgrid quantities. Figure 4(a,b,c) shows scatter plots at a given time

for (a) 7/i i1. _ _, (b) 711 _'. v ) and (c) 7/t ,. ,'1, tor various .5/. The corresponding correlation and re-

gression coefficients are shown in Table (1). Convergence at the subgrid level is clearly obtained as

__.k_ -- t_. Note nonetheless the large difference between LES-FD and VFDF when .3 t_ = :2_. Tune

averaged quantities corroborate these last results as observed in Fig. 5(a,b,c) where (a) rl q,., ), (b)

7l _,. ,1 and (c) 7/_ ,. _.J are shown.

The other parameter which influences the accuracy of the Monte Carlo results is the number of

Monte Carlo particles per grid cell (Vt'¢ ,'). Figures 6(a,b)and 7(a,b,c) show that . ,1 and (v)c

17



aretotally insensitiveto .\ P(; for the range considered and that :L __,. _. i values do not vary sig-

nificantly for .\ P(; > 40 with a given -IE. More important figures 6 and 7 illustrate the greater

influence of the size of the ensemble domain than .VPG. Consistency simulations with no third

order subgrid terms in the LES-FD scheme were conducted and significant drops in the correlation

coefficients were observed especially for _ E = 2_ (cases not shown). The Reynolds averaged

subgrid stresses did not depict such drastic behaviors but differences could still be observed stress-

ing the importance of the third order terms for any LES-FD/deterministic approach. This problem

is avoided with the VFDE Therefore in the general case even smaller A'PG values can be used as

long as A E is properly chosen. This last statement is advanced based on the observation that the

third order subgrid quantity rL ( u,. uj. u_ ) is required for consistency simulations which is not the

case for the general approach.

The convergence of the Monte Carlo solution and the independence to .\PG and ..-kE are demon-

strated by these results (at least for the first filtered moments). The size of the ensemble average is

nonetheless important as it influences the general behavior of the LES solver through the predic-

tions of the SGS. It seems necessary to keep .._kE reasonably small in accordance with the theoretical

point of view to estimate the subgrid quantities correctly.

VI.4 Qualitative study of the VFDF: comparison with existing closures

Deterministic closures were presented in Section II. The first one referred to as the "Smagorin-

sky model", Eq. (5), assumes equilibrium between the production and dissipation rates at the sub-

grid scales yielding a zeroth order closure. The second closure, Eq. (6), referred to as the "k-eqn

model", z° suppresses the previous equilibrium assumption by solving a modeled transport equation

for Z
= - rL I U_. U_ 1which, to some extent, allows resolution of the present desequilibrium in the

subgrid scales. Both of these models are nonetheless unable to resolve the anisotropy of SGS which

is expected to increase in low resolution LES simulations of practical engineering flows. The last

deterministic model corresponding to Eqs. (7,8,9) and referred to as the "SGS-eqns model ''2s.z7 the-

oretically predicts anisotropy of the SGS as well as the desequilibrium process. The VFDF model,

Eq. (30), has all the properties of the "SGS-eqns model". These last two models are not fully con-

sistent in this subsection. The third order quantities, 7L I, . _,. _,_ I, being implied in the VFDF clo-

sure have to be modeled with "SGS-eqns model", Eq.(9). These term contributions were already
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foundto becritical in theprevioussubsectionandarefurtherstudiedfor thesecondorderclosures.

The coefficientCo found in the VFDF and "SGS-eqns" models is varied in order to evaluate its

effect on the flow predictions. Only the Reynolds averaged quantities are considered here as they

are illustrative of the instantaneous behavior of the studied dynamic systems. Our objective is to

illustrate through numerical simulations the fundamental differences between the dynamic systems

composed of the LES governing equations plus the LES model and quantify the closure coefficient

significance.

Figure 8(a) shows the values of I, ) L along the center line as obtained from the different models. The

Smagorinsky and k-eqn models predict roughly the same slope of decay of the streamwise velocity.

The higher order models on the other hand predict different behaviors depending on the value of

Co. This observation allows us to stipulate on the importance of this coefficient in predicting the

strength of the diffusive effect of the SGS scales. Also to notice from Fig. 8(a) are the different

locations of the starting velocity decay from one model to another. The deterministic models predict

the transition to occur at z = 7.5D -+-0.5D. The VFDF produces two distinct regimes. The first

regime depicts a slowly decaying (u)L until .r _ 8D where transition to a fast decay occurs. In the

second regime the slopes are similar to the values obtained with the SGS-eqns closures. Shown in

Fig. 8 (b) is the cross-stream variation along a = _/3 for the streamwise velocity component non-

dimensionalized by its value at the center line. Clearly the level of diffusion in the profiles decreases

as one uses the Smagorinsky, the L-eqn model, the SGS-eqns or VFDF models. Note that results

obtained without model are adjoined to the figures to illustrate the importance of the SGS in the

present simulations.

The decay rate of the center line velocity is related to the large structures behavior which is essen-

tially governed by the subgrid production rate of kinetic energy, - 71 1,,. _ _ i'i ,,,u_)/. This last quan-

tity transfers the mechanical energy contained in the large structures to the internal energy and is

dissipated by the viscous forces. The Reynolds averaged production rate and subgrid kinetic energy

are shown in Fig. 9(a,b). The choice of LES model defines the mechanism of energy tranfer between

scales. The Smagorinsky and k-eqn models predict roughly the same level of energy transfer while

the other models predict more than twice the amount of subgrid kinetic energy production rate. Here

again ( '_,is found to be an important parameter for the second order type of closures (SGS-eqns and

VFDF). For approximately the same levels of subgrid turbulent kinetic energy, Fig. 9(b), the sub-

grid production rate differs quite much for various C ',, values. In Fig. 9(a,b) the subgrid quantities as
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obtainedfrom theVFDFmodelsshowtwo regimesasobservedin Fig. 8(a). Thesubgridproduc-

tion rateandturbulentkinetic energyfirst grow slowly attwo differentratesuntil .r _ SD. Within

this potentialcoreenergyisslowly removedfrom thelargescalesincreasingtheenergyin thesmall

scales. This transfer of energy results in a slowly decaying center line velocity component as ob-

served in Fig. 8(a). At x _ 8D, k and its production rate suddenly increase to the levels obtained

with the SGS-eqns model. This two regime behavior observed with the VFDF in Figs. 8(a)-9(a,b)

can only find its source in the third order term as it is not predicted with the deterministic mod-

els which ignore rc_t_,, u;. u _._ or supply a more or less ad hoc modelisation. Finally, differences

observed between VFDF simulations can only result from the values of C0 as .VPC = 40 and

...kE = .._Xare kept identical.

Equation (23) demonstrates that Co influences only the anisotropy of the SGS. Hence, the obser-

vations formulated from Fig. 9(a,b) are explained through the level of anisotropy in the SGS as

predicted by the models. The third order term, rL(u,, u_. uk ), can aslo be at the origin of these dif-

ferences, but only to some limited extent. Anisotropy in the normal SGS are shown in Fig. 10(a,b)

for the cross-stream direction along a. = SD. The effect of Co is clearly illustrated at the subgrid

level in these last figures. Because of the importance of the SGS in Eqs. (4) and in the evolution

equation of k, Fig. 8, _'o plays a crucial role in predicting the desired behavior of the LES dynamic

system.

The final part of this subsection considers the VFDF equations obtained in Eq. (30) and Eq. (36).

These models are respectively referred to as "VFDFI" and "VFDF2" in the figures. The compar-

ison is conducted for the same conditions as above and aim to study the differences between the

two stochastic systems given in Eqs. (32) and Eqs. (37). The two models essentially differ in the

presence or not of the resolved disspation rate in the time evolution of the incremental velocity cor-

relations. Figure 10(a,b) validates the approximation made in Eq. (36) for the flow configuration

studied. The resolved part of the dissipation rate is still found to have effects on the predictions and

use of the original model, Eq. (30), is still advised as LES usually deals with 3D, transient flows of

finite t_', number in which resolved scale contributions are of critical importance.

The comparative study of the behavior of various LES systems (i.e: LES solver plus SGS model)

underscores fundamental differences in the dynamics of the systems inherited from the SGS mod-

els. More specifically, the third order filtered correlations are found to be of importance for the

second order closure systems. The ( ',, coefficient, necessary for the VFDF closure, seems critical
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inestimatingthe anisotropy in the SGS as well as the proper decay rate and energy, transfer between

scales. The choice of coefficient in the VFDF model will therefore result in a specific dynamic evo-

lution of the LES solver as observed in this subsection. As a consequence, gathering informations

about C0 for different flow configurations is necessary for validation of the VFDF approach.
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Figure 1: Instantaneous snapshot of the vorticity field: (a) VFDE (b) LES-FD.
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VFDF/LES-FD .1E = A/2 -XE = _X [ .1E = 2A

<")L f*ZF

rEF

(_')t PEr
rEF

7LI u. u fiEF

rEF

TL ( t'. I" PE F

rEF

rL ( u, _' PE,F

rEF

0.9997

0.9995
I

0.9826

0.9879

0.9233

0.9516

0.8992

0.8943

0.8930

0.9351

0.9997 0.9995

0.9977 0.9947

0.9806 0.9688

0.9900 0.9726

0.9131 0.6954

1.2334 1.8474

0.8867 0.7059

1.1900 1.8666

0.8784 0.5137

1.0894 0.9236

Table 1: Regression, rEF, and correlation, PEF, coefficients as a function of AE for Fig. (4). Pla-

narjet configuration: 201 × 101.

VFDF/LES-FD AE = .1/2 .1-hE= _1 .1_ = 2._/

lUlL PEF 0.9995 0.9994 0.9995

_v.r- 0.9962 0.9974 0.99-12

(r_/ ;_EF [). !)'_:_8 Ii.._)8(:;._) 0.9871

'FF I).!)f)_7 {},gf):_O 0.9857

Tl.I tl. tt' t'[c'f ll.$721 (I.SS(i:{ II.(iS71)

rEF I. l 2lll 1.05.q I 1.507-1
t

rLI _' c) I_EF (}._:2 11 ().$2!)5 0.(i8:_6

t'EF I. 08.");] 1.0272 1.5082

7L( u. _'I PEF ().$279 l (I.79.94 0.89:58

rEr [.(I7:lb _ 0.9347 (I.$958 Jl

Table 2: Regression, "KF, and correlation, PL/., coefficients as a function of .11... Planarjet config-
uration: 181 , '_1.
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ExplicitAlgebraicScalar-FluxModels
for TurbulentReactingFlows

V. Adumitroaie, D. B. Taulbee, and P. Givi

Dept. of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260

Explicit algebraic scalar-flux models that are valid for three-dimensional turbulent

flows are derived from a hierarchy of second-order moment closures. The mathematical

procedure is based on the Cayley- Hamilton theorem and is an extension of the scheme

developed by Taulbee. Several closures for the pressure- scalar gradient correlations are

considered and explicit algebraic relations are provided for the velocity-scalar correla-

tions in both nonreacting and reacting flows. In the latter, the role of the Damk6hler

number is erhibited in isothermal turbulent flows with nonpremixed reactants. The rela-

tionship between these closures and traditional models based on the linear gradient-

diffusion approximation is theoretically established The results of model predictions are

assessed by comparison with available laboratory data in turbulent jet flows.

Introduction

Despite extensive recent contributions in direct and large

eddy simulations of turbulent reacting flows, the application

of such simulations is limited to "simple flows" (Girl, 1994).

Based on this fact, it is now widely recognized that the "stat-

istical" approach is still the most practical means in compu-

tational turbulence, and future capabilities in predictions of

engineering turbulent combustion systems depend on the

extent of developments in statistical modeling.

The literature on computational prediction of nonreactive

turbulent transport is rich with schemes based on single-point

statistical closures for moments up to the second order

(Taulbee, 1989). Referred to as Reynolds stress models

(RSM), these schemes are based on transport equations for

the second-order velocity correlations and lead to determina-

tion of "nonisotropic eddy-diffusivities." This methodology is

more advantageous than the more conventional models based

on the Boussinesq approximations with isotropic eddy diffu-

sivities (such as the k - • type of closures). However, the need

for solving additional transport equations for the higher-order

moments could potentially make RSM less attractive, espe-

cially for practical applications. For example, it has been re-

cently demonstrated (HSfler, 1993) that the computational

requirement associated with RSM for predictions of three-

dimensional (3-D) engineering flows is significantly higher

than that required to implement the k-e model. The in-

crease is naturally higher for second-order modeling of chem-

Current address of V. Adumhroat¢: CF'D Re-.tearch Corp., Huntsville. AL 35805.

ically reacting flows due to the additional length and time

scales that have to be considered (Toor, 1991; Jones, 1994;

Libby and Williams. 1994).

A modality to reduce the large number of equations associ-

ated with RSM is to utilize "algebraic" closures. Such clo-

sures are either derived directly from the RSM transport

equations, or other types of representations (Speziale, 1991;

Yoshizawa, 1988) that lead to anisotropic eddy diffusivities.
One of the original contributions in the development of alge-

braic Reynolds stress models (ARSM) is due to Rodi (1976).

In this work, all the stresses are determined from a set of

"implicit" equations that must be solved in an iterative man-

ner. A somewhat similar method was applied to the heat-flux

equation by Gibson and Launder (1976). Pope (1975) offers

an improvement of the procedure by providing an "explicit"

solution for the Reynolds stresses. This solution is generated

by the use of the Cayley-Hamilton theorem, but is only ap-
plicable for predictions of two-dimensional (2-D) mean flows.

The extension of this formulation has been recently done by

Tauibee (1992) and Gatski and Speziale (1993). In these ef-

forts, the Cayley-Hamilton is used to generate explicit alge-

braic Reynolds stress models that are valid in both 2-D and
3-D flows.

The objective of this work is to expand upon the formula-

tion developed by Taulbee (1992) (also see Tauibee et al.,

1993) for predictions of turbulent flows involving scalar quan-

tities (Brodkey, 1981). The specific objective is to provide ex-

plicit algebraic relations for the turbulent flux of scalar vari-
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ables. Both nonreacting and reacting flows are considered. In
the latter, a second-order, irreversible chemical reaction of
the type ,4 + B _ P is considered in isothermal turbulent
flows with initially segregated reactants (Brodkey, 1975; Toor,

1975). The closure explicitly accounts for the influence of the
Damk6hler number and includes the mixing solution in the
limit of zero Damk6hler number. Similar to previous contri-
butions, the starting equations are the currently available dif-
ferential equations for the second-order moments. Accord-
ingly, several previously suggested closures for the
pressure-scalar gradients correlations are considered. The fi-

nal results are compared with available experimental dam in
turbulent jet flows.

Theoretical Background

With the convention that the angle brackets () represent
the ensemble mean value of a transport variable and the
prime denotes its fluctuations from the mean. the nondimen-
sionalized averaged equations in space (x_, i- 1, 2, 3) and
time (t) for incompressible, isothermal turbulent reacting
flows are:

_-o, (1)

a(u,) a(ui)(u/) O(u'iu_) 1 O(p) I O2<ui)
+ = h

at ax i _xj (p) Ox i Re Ox/Ox/

i,j- 1,2,3 (2)

o(Y.> o(Y_)Cu,> a(u'/>(Yi> 1 O2(Y.>
--+ + +(m.),

Ot Oxj Oxj SeRe OxlSx J

a - A,B. (3)

Here u i, p, p, Y,, Re, and Sc denote the ith component of
the velocity vector, the pressure, fluid density, mass fraction
of species ,_, the Reynolds number, and the Schmidt num-
ber, respectively, while (&,) represents the rate of chemical
reaction ((&A) = ( &a)):

( _) _ - Da((YA)(Ya)+(Y_Y_)), (4)

where Da is the Damk6hler number. The algebraic formula-
tion entails a two-equation scheme in which the Reynolds
stresses and the scalar fluxes are expressed by nonlinear
functions of the mean gradients and the time scales of the
flow (Wang and Tarbell, 1993). The mechanical time scale is

determined by the solution of transport equations for the tur-
bulent kinetic energy (k) =- (u',u_)/2 and for the turbulent
dissipation

1 (_u',Ou',)( _ ) = -_e oxj axj "

For shear flows, these equations are (Pope, 1978):

a(k)

Jt

J(k)(uj)
m _

Ox/

o

+Re axjax i (u',u)) axj Re axj axj ' (5)

a(_)
m" l
Ot

a(,><uj> a (_'>+
a,,--7"- ax--: \ ax,

I a2(() (() , , d(ui) (E) 2

+ Re axxaxx-c',_-_(u'uj>-7_-xj-C:_(k) ' (6)

with Co,- 1.44 and C:2 - 1.92- C,, k'. The parameter X rep-
resents the correction for the dissipation equation in round
jets and is given by X - ((k)/(_))altlflS}, where {} denotes

the trace, S represents the mean-flow strain-rate tensor, Su
=[a(u_)/axj + a(uj)/JxA/'2, and/I denotes the mean flow
rotation-rate tensor, a_j-[a(u,)/oxj-a(uj)/axA/2, with
Co_- 0.89, the spreading rate of jet flows is correctly pre-
dicted with the nonlinear m'-_-strain relation.

Treatment of the scalar variable requires the solution of
additional tr_port equations (Ch_a'abarti et at., 1995) for
the reactants' cov_udance (Y" Y_), and dissipations

(E._)-_ axj ax, "

For the former we have

a(r'Y;> a<Y.'r,'><up a(u)Y/r_> 1 a2<rir,'>
-4- -- l-

Ot ax_ Oxj ScRe Ox/,_xj

-(u'),j>o(Y,>_(u,,r,,>
Oxx SeRe Oxj Ox/

+ (m._')+ (mar). (7)

By neglecting the third-order mass-fraction correlations, the

chemical-source terms in the expanded form read (no sum-
mation on Greek indexes in all subsequent equations)

( &oY_) + (&_ri) - - Dd((YiYI) + (Y_Y_)(Ys) +((Y_,Y_)
+ (Y_ Y_ ))(Y_ )]. Full resolution of the nonlinear interactions

in the chemical scalar fields requires significant computa-
tional effort in practical applications (Hill, 1976; Girl, 1989;
Fox, 1996). The neglect of the higher-order scalar fluctua-
tions for the configurations considered here is justified (Girl,

1989), but cannot be recommended for general applications
(Wang and Tarbell, 1993). In such applications, the single-
point probability density function (PDF) or the joint PDF of
the scalar variable provides the required information (Toor,
1962; O'Brien, 1980; Dopazo, 1994; Fox, 1996). The inclusion
of the PDF is not attempted here.

There are several methods for evaluating the scalar covari-
ance dissipation (Jones, 1994; Newman et al., 1981; Jones and
Musonge, 1988; Borghi, 1990). By using the first-order term

in the two-scale direct-interaction approximation, Yoshizawa
(1988) develops a generic model for the scalar dissipation. An
equivalent functional expression is obtained from Yoshizawa's

1

k
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results_ making use of the time-scales ratios r. = 2(k)( e. )/
((e)(Y")) (hereinafter eo -- co,) and replacing the diffatsion
effect term by the inherent gradient of the turbulent flux.

The equivalent form of this equation including the effects of
chemical reaction is (Adumitroaie, 1997):

a(_oB) a(e.B)(u j) a 1 a2(e,,e)

+ = - _ <u)e°B>+at axj SeRe axiax j

(e) 1 [ , a(Y_) a(Yo)

+<')Y;> )

(e.n) .... , a(u____))_ C,, ( %_)2
-c,,_v,,.,jj axi (l"dYd>

- C,, (e)(e,,_)(k) + s,,,_, (8)

in which the chemical*source term is of the form

8,,_ = - Do[((_A°) + (E,,B))(YB) + ((Em_) + (eoB))(YA)].

(9)

To determine the magnitudes of the model constants the
transport equation for ro as derived from Eqs. 5-8 can be
used in the limiting case of mixing:

(k) 1 dro=(Cy_ro)P_+(l_C, +Cy2)P
(e) r, dt eº

Cy,+ l---ffjro+(C', -l-Cy,) (10)

where the production terms are P---(u'iu))a(u,)/ax j and
P_ = -(u)Y" )a(Y, )/axj. In the experiments of Warhaft and
Lumley (1978) on decaying heated-grid turbulent flows it has

been observed that the magnitude of ro is in the range 0.6 <
ro < 2.4. In the experiments of Beguier et al. (1978) on ther-
mal turbulence in several thin shear flows it is indicated that

ro--2. Based on this information, using the procedure de-
tailed by Jones and Musonge (1988) it is possible to estimate

the magnitudes of the model constants: Cr, = ro - 2.0, Cy, =
2.0, Cr, _ C_2 - 1 = 0.92 - C,, X, Cy 2= 0.5.

To complete the closure formulation, all the third-order

transport terms are described by the gradient diffusion hy-
pothesis. Denoting by - any of the fluctuation products on
which the second-order correlations rest, we have:

(k) , , a(_--)

(u;_=) _- - C-(-_(u,ui) axj
(11)

where C, is taken to be equal to 0.22 for all nongradient
correlations (._ - k and -= = y,_2), whereas for the dissipa-
tions (--• and ._= _°), C, =0.18. Also, the molecular

transport terms are neglected under the assumption of high
Reynolds-Peclet numbers flow.

Explicit Algebraic Models

An improved explicit ARSM for 3-D flow has been derived

by Taulbee (1992) from the modeled transport equation for
the Reynolds stresses. This model is based on the general
linear pressure-strain closure given by Launder et al. (1975).
The improvement is due to an extended range of validity;, the
model is valid in both small and large mean strain fields and
time scales of turbulence. The nonlinear stress-strain rela-

tion for 3-D mean flows is of the form (Taulbee, 1992; Taulbee

et al., 1993) a- a(S, fl), where a is the anisotropic stress

tensor, ao-[(U'U_)/(k)-2iSi./3]. The ARSM depends on
key turbulence parameters such as the turbulence time scale
_-- (k)/(e); the production-to-dissipation ratio P/(e),

where P- -(k)aoSji is the production of the turbulent ki-
netic energy, the invariants of the strain rate and rotation

rate tensors trZ-(SqSii), to2-(fli/fZi/); and the model co-
efficients of the pressure-strain correlation and the modeled
dissipation equation.

A similar line of reasoning is followed to obtain a 3-D alge-
braic closure for the velocity-scalar correlations. The trans-
port equations governing these correlations are transformed
into algebraic expressions by making two assumptions: (1) ex-
istence of a "near-asymptotic" state, and (2) the difference in

the transport terms is negligible. The starting equations for
the convective scalar fluxes are described by

t e n e e 4.

a(u,Y:)'' _ a(u,g'.)(u,).._ a((uiu,Y') (p'y2) A p)a u)
at axj axj

1 / ,aY') [ , , O(Yo) O(u,))

- oo((u',Y:)(Y_) + (u',_')(Y°) + (u'YD';))

+-- _xj/Y_'_xj +-- . (12)

On the RHS of this equation, the following terms are iden-
tified: turbulent transport, pressure-scalar gradient cor-
relation, production by the mean velocity and the mean
scalar gradients, chemical reaction effects, molecular trans-

port (assumed negligible at high Peclet numbers), and viscous
dissipation. Based on the Poisson equation satisfied by the
pressure fluctuations one can arguably split the pressure-
scalar gradient correlation into two parts corresponding to

so-called rapid and slow terms (Lumley, 1978). The rapid
term represents an inner product between the velocity gradi-
ent tensor and a third-order tensor, the last one subject to
symmetry, continuity, and normalization constraints. As sug-
gested by Lumley (1978), since the slow pressure-scalar
gradient term and the viscous dissipation term are functions

only of turbulent quantities, they can be incorporated into a
single closure. The ensemble of the entire pressure-gradient
term and viscous-dissipation term enjoys a general relation

encompassing some of the formulations proposed in prece-
dent contributions. Consequently, this is written

AIChE Journal August 1997 Voi. 43, No. 8 1937



, Ia,,. - <p-.--S\ p .7_, I - -j--'_ \ a,,j a_,j

e_. (e) [ a(ui) , , + a(us) , ,
I 2 (k)(U'Y')+[c"_Txj(uY[') cz'-_'_xi(UJY')

a(us> , ,. a(uD , ,
+ c:'_x, au(ukY'-)+ c,'-_"xjfau(ukY_ )+ a,k(u'iY_,))

a(ui) ' ' c a(Y°>a (k)]
+_:-.=--o,,,(u,,Y'>+_,_,,_ ,, j. (13)

The model coefficients in this equation are taken from Laun-
der (1975):

et. - 6.4, c 1 = 0.51 Cl I 0; i " 2,6, (14)

Jones and Musonge (1988):.

e,o I6/[1+l.5(aika)k)l/2], Cl I 1.09, C2 I 0-51,

c_= 0; i- 3,5; cs- 0.12, (15)

Rogers etal.(1989):

( 7(130 12.5

e,o =18 1+ S--_e _ 1+ ReO.,-------_ -(-_--1)

( P* -1) c,-O; i-1.6, (16)

where Re, = 4(k)ZA(e)u), and Shih et al. (1990):

e_. = _0+ r° ( ll,_ + 3aj,,d:,/2-3aj, d,,:) + HF_"

c 1=4/5, c2=-1/5, c3=1/10,

• c4=-3/10, cs--l/5, %-0, (17)

where H = 1.1 + 0.55(2t# - l)tanh[4(r. - I)]; qs -- 1 +

F/18 exp ( - 7.77/Rey2){72/Rey z + 80.1 log [1 + 15.6( - II +
1.15II1)]}, with F--1 +27II1/8+911/4, a parameter involving

the second invariant H-- l,/2aoaj, and the third invariant

IH - - 1//3a,iap:atc , of the Reynolds stress anisotropy tensor;
2

Re t = 4(k)/_9(e)u) denotes the turbulence Reynolds num-
t r t _ U _ U w _2 i r , ,ber: d,kz((u,Y'-)(ukY')-( , t)(Y'- ))/((uoY_)(uoY:,)-

" t "_ .... 2 3

2(k)(Y_')); FD =9/2-27d;/2+9dsfi Ha is the second in-
variant of the tensor risk; d_ - d#do; and d 3 = djtdt,,,d,, s.

To proceed, let us denote the mechanical-chemical corre-
lation coefficient (normalized scalar flux) by:

(u'y/,)

_'° ((k)(y,_Z))vz "
(18)

The transport equation for the correlation coefficient ¢,o (a
_) is of the form:

D_io 1
s

Dt ((k)(y,_2))t/2

-t

+P,. +_,. + _., (19)

where the notation D/Dt indicates the convective transport,

and T,._, Tj°, and T_ denote turbulent transports of the scalar
flux, the scalar-variance, and the kinetic energy, respectively.

Moreover Po - -( ( k )( Y'2 ) )V_S° O( Y. )/Ox s is the produc-
tion of scala_ variance; go - --"(_oY_) is the chemical source

term in the (y,_2) equation; and the remaining quantities are
the normalized production, pressure-gradient, and the chem-
ical-source term:

(20)

2r _o,o+[(c_ +cz)Su_oj, ,

+ (c_ - c2)flu%,, + (c 3+ c4)auSj_ , _. + csaj_Su_ok,,

+ (c 3 - c_ )aufl_k _ko + c_ajtl'li.i_%a + c4astSsk _o_o]

[ (k> _w a(Yo> (21)
+c't_ ] % ax,

_,° = - Da(_o,.(Ya)+ ,ia(Yo)+ y,.a(Y_z)w). (22)

Here V,.a = (u',Y/,Yj)/_(k)(Y'2)(Y_2)) vz is the normalized
covariance flux vector.

The results of direct numerical simulations (DNS) of non-

reacting passive scalar mixing in homogeneous turbulent shear
flow (Rogers et al., 1989) suggest the existence of an asymp-
totic state for the normalized correlation coefficient _oi°, but
not for the scalar flux itself. This observation justifies the first

assumption, at least for reacting flows near the frozen limit.
The second approximation is yet to be substantiated and its
assessment requires future DNS or laboratory experiments.
Under these assumptions the term representing the convec-
tive transport is set to zero and the difference in turbulence
diffusion terms is discarded. This procedure leads to an algeo

braic system of equations for the two unknown vectors _,.

and _,_:

{ _. + D.A_o + B._# +C. - 0_oa + DaA_o # + Ba_oo +C a *-0, (23)

1938 August 1997 Vol. 43, No. 8 AIChE Journal



wherethecoefficientsare

Da I

2rh,, 2rh a

l+2Darh,(yB), D_ ffi l+2Darh#(Yo)' (24)

B. = oa(K)D., B_ = Oa(_>o B, (25)

with

P ( p. So/1-'h.- ,
(26)

h a- elB-l+(1-2c_)._+r¢ -1+ ,

(27)

and the vector terms read:

((k) _Wl"

o(Y.) }X _ + Da(y_2)_y_.a , (28)
ax k

[, c,o.,:.]
x 8(V°-"_) +Da(y_'2)v2V,.a}.o)xk (29)

Finally. the anisotropy of the turbulent diffusivity is ensured
by the properties of the second-order tensor A:

A,k = [(1 - c I - c2)S,k + (1 - c I + c2)ft,_ -(c 3 + c4)a,jSjk

- c_akjS;, -(c 3 - c4)aofl)k + csakjDi_]. (30)

This tensor tt_rns out to be traceless (A,_ = 0) as a conse-
quence of incompressibility and of the particular values taken
by the constants, c/s. Now, the solution of the system of Eqs.
23 is conveniently represented in the form:

(_Oo : -M-t[(8 + D#A)Co - B.Ca]_ -M-t[(B + D.A)C_ - BsC.],
(31)

where M denotes the matrix [(1-BoBB)8 +(1). + D_)A+
Do D aA_]. The expressions for the turbulent fluxes of reacting
scalars exhibit the influence of the DamkShler number Da.

Also, the coupling between the reactants is reflected by the
nonlinear dependence on the mean scalars and the presence
of the covariance flux. _....

To provide a computationally efficient algorithm, the ma-

trix M is inverted analytically. This is achieved by the use of

the Cayley-Hamilton theorem and yields an expansion defin-
ing a natural basis for this problem:

2 2

_o = E a. AnC. + E a',A'CB" (32)
n-O n-O

In the Appendix the inversion procedure via the Caylcy-
Hamilton theorem is outlined and the coefficients a. and a'.
are listed. The final results provide an explicit solution for
the scalar fluxes. In the limit Da-* o,, the use of the mixing
solution (Da-0) for the transport of a Shvab-Zel'dovich
variable (Toor, 1962; Williams, 1985) is recommended.

Illustrative Examples

In this section, we present some sample results of numeri-
cal calculations based on the models given earlier. There are
two primary reasons for conducting these simulations: (1)
model assessments via comparisons with laboratory data, (2)
demonstration of the model capabilities in comparison to tra-
ditional closures based on the linear gradient-diffnsion ap-
proximation. The flow configurations considered consistof
turbulent-plane and round-jet flows for which laboratory data
are available. The mean flow motion in these shear flows is

assumed 2-D or axisymmetric. The space coordinates are
identified by z - [x, y], where x is the streamwisc coordinate
denoting the direction of the flow's principal evolution, and y
represents the cross-stream direction. The velocity field is
identified by u- [u, v]. In nonreacting flow simulations the
mass fraction of one conserved species, Y,4, is considered. In
the jet configurations, YA -- 1 is issued at the inlet into a sur-
rounding of YA "0. For the reactive case, YA" 1 is issued at
the inlet into a surrounding of YB _l. These species are as-
sumed thermodynamically identical, and there is no trace of

one of these species at the feed of the other one; that is,
complete initial segregation. Also, the heat generated by the
reaction is assumed negligible.

The transport equations governing the velocity and the
scalar fields are of parabolic type with the thin-shear layer
approximation. For 2-D mean flows, the ARSM (Taulbee,
1992) is of the form:"

_-2C,,r[S+ , 2 flS)]a btgrtr'(-_B-atz))+bzgr(Sfl - ,

(33)

where 8(2_m[45_2)]--1 for i-jffil, 2 and 0 otherwise. The
parameters C_, and g are given by

C w

4g/15

2 t

1 - -_(blgr)2o "2 + 2(b2g'r)2 to 2

[g= CI +C,2-2+(2-C,)P/(E)+-- (34)
o Dt J ""

where C_, b_, and b 2 are constants from the pressure-strain
correlation model (C I - 1.8, b_ - (5 - 9C2)/11, b 2 - (1 +
7C2)/11, C, ffi 0.45). In the self-preserving regions of turbu-
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lent shear flows, the convective term D#/Dt can be ne-

glected. For 2-D mean flows, with zero rate of reaction the

scalar-flux model is expressed as

> a(Y.>
(u'iY{')'- I+--"_G AO Oxj 135)

which has the gradient form, but with an anisotropic diffusiv-

it7. With the thin-shear layer approximation,

llG .[(cz +c4au)(l_g_c3all_csa22)_c3at 222 ]

X t 2h.¢--@-- )
(36)

and the nonzero components of the diffusivity tensor, AO,
are

Allm(1-2c3yhmal2--_'- )d(u)_[(1-c6)all+2 ]

d(u).

-2rho(1- c6)a21---_(1 - c I - c3all - csaz2) (37)

d<-> [,,
A= - (1+ [,.- c,),'= + 2]

d(u) .

+2yh,,(1- ce)at2----_-(c 2 + c4a22) (38)

A33=(l+IIG)[(I--c6)a33 +2 ] (39)

At++= (1 -2c3rh.at:--d(_)) (1 - c6)at2

[-2rh° (1-c6),,2z+ --_(1-cl-c3aH-csa22) 140)

a(u)A2X = l+2c_rh_at2----t_y---J(1-c6)a2t

+2rho[(1-c+)aH+2] d(u)"---_'--tC z + c4a22). (41)

These anisotropic diffusivities are determined directly from

the velocity gradient, the components of °his•tropic Reynolds
stress tensor, and the model coefficients.

The numerical algorithm for the solution of the transport

equations augmented by the algebraic closures is based on a

first-order upwind differencing for the convection terms and

a second-order central differencing scheme for all the other

terms. Due to the anisotropic character of the algebraic clo-

sures, it is possible to evaluate all the components of the
Reynolds stress tensor and the scalar-flux vectors, in this

evaluation, the terms appearing as model coefficients (e.g.,

P/(e) in Eq. 26) are treated in an iterative procedure. The

implementation of the boundary conditions is similar to that

in many previous simulations of parabolic shear flows (e.g.,

Taulbee, 1989). In the results presented below, the spatial

coordinates are presented by v/-y/_x-x 0) for hydrody-
namic and

T_d_ l

y((Y.) - o.5(Y.)cL)

for the scalar variables, x o denotes the virtual origin of the

jets. In the nonreaeting jets, the subscript CL denotes values

at the center line (i.e., y - 0). In the reacting jets, the corre-

sponding profile of Y.4 under no chemical reaction is em-

ployed in the normalization. In all the figures below, the

transverse variations of the statistical variables are presented.

The ex_rimental results pertaining to the velocity fields of
planar jets as reported by Gutmark and Wyguanski (1976),

Bradbury (1965), and Heskestad (1965) are compared with

the model predictions in Figure 1. The agreement is reason-

able for the mean streamwise velocity and also for the com-

ponents of the Reynolds stress tensor. The predicted spread-

ing rate (dy<._,>c, .o_Jdx) is 0_105, which is within the range

suggested by experimental measurements. In Figure 2, the
predicted results for the mean and the variance of the nonre-

acting scalar are compared with the experimental data re-

ported-by Browne et al. (1984), Bashir and Uberoi 11975),

Uberoi and Singh (1975), Jenkins and Goldschmidt 11973),

and Ant•hi° et al. 11983). Figure 2 indicates that the models

based on the coefficients proposed by Launder 11975), Jones

and Musonge (1988), and Shih etal. (1990) predict the mean

scalar values in these experiments reasonably well. These

models also yield good predictions of the experimental data

q

0.12

l o Gu_,a_ t _ l+ s_)

,+ II Ikadlx_ ( l lll_)

°'I '

ooo.

n

-- AJq_d

"! \
' ' - , i , i0%;, o. o,* _,s 0= 0,, 03* 0%® 00+ 0;0 *,s u* +,*

q rl

Flgure I. Cross-stream varlation of (u)/(U)ct, (u'+)/
(u)_:t, (V'+)/(U)2cL, and (u'v')/(u)_ct for tim

planar jet.
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of Uberoi and Singh (1975) for the scalar variance. All the

other experimentally measured variance profiles are better
predicted by the model with the coefficients of Rogers et al.
(1989).

The procedure by which the Reynolds stress tensor and the
scalar-flux vector are determined by our explicit solution al-
lows a direct comparison of the calculated fluxes with data.
This comparison is made in Figure 2 and indicates that the
models with coefficients of Launder (1975), Jones and Mu-
songe (1988), and Shih et al. (1990) yield results in reason-
able agreements with the experimental data of Jenkins (1976),
but overpredict the experimental data of Antonia (1985) and
Browne et al. (1984). These data are in better agreement with
the predicted fluxes based on the model of Rogers et al.
(1989). The lower spreading rates predicted by the model of
Rogers et al. (1989) are primarily due to the relatively large
values adopted by the parameter _1o- In this model, the pro-
posed form of en. and its correlation with the turbulence

Reynolds number are determined with comparative assess-
ments by DNS results of homogeneous turbulent shear flows.

In the jet-flow experiments, as considered here, a direct ap-
plication of the model yields relatively large values for eno,
and thus small turbulent diffiJsivities. Consequently, the pre-
dicted scalar spreading rate is lower than that measured ex-
perimentally. Nevertheless, in the core region, the results

predicted by this model are closer to the majority of available
experimental data compared to predictions based on other
models.

With these results it is possible to perform an a posteriori
appraisal of the closures based on conventional linear gradi-

ent-diffusion hypotheses. For example, the parameters C_,
and Sct as given by

0(U) (k) 2

(u'd) = - v, ey v, =C. (_) (42)

v, _(r.>
(t/Y_) = , (43)

Sc, ey

can be directly evaluated. The explicit algebraic relation for
C, is given by Eq. 34; the relation for the turbulent Schmidt
number is

o.lo
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Figure 2. Cross-stream vitiation of (Y_)/(Y_)ct, (Y;_)I
(Y_)_t, and (v'Yj)/((U)ct(Y_)ct) for the p_i-
nar jet.

for all these parameters near the free stream. The amplitude
of the parameters at the free streams can be controlled by
modifications of the boundary conditions. An extract specifi-
cation of these conditions requires inputs from laboratory
measurements.

Some of the influences of the chemical reaction on the

scalar field in the turbulent plane jet are presented in Fig-
ures 4 and 5. In the calculations pertaining to these figures,
the model coefficients of Launder (1975) are employed. The
influence of reaction in modifying the amplitudes of the

Sc r

• [ d(u) _2

1-4[c2a22-(c2 + c4azz)(1-c, -c3at, -csaz2)] t hor---_ )

1+2c3rho )[(1- c,)a22+ ]+2 'h.(1- q,c2
2g

* .'o,
Figure 3 shows the cross-stream variations of C_, and of Sc,

and ro based on the pressure-scalar gradient model in Shih

et al. (1990). These results can be compared with C,- 0.09
and Sc, = 0.7, typically employed in the linear gradient-diffu-
sion approximations. Also, the ratio of the velocity to scalar
time scales (to) indicates that an approximate constant value
can be used at the central region of the layer. This is in ac-
cord with the results of Beguier et al. (1978) and Tavoularis
and Corrsin (1981). As expected, there are large variations

scalars' means (Figure 1), variances (not shown), and turbu-
lent fluxes are captured by the model (Dutta and Tarbell,

1989; Gao and O'Brien, 1991). In accord with the physics of
turbulent flows with segregated reactants, the unmixe.d!ness is
negative throughout the layer (Shenoy and Toor, 1989;
Leonard and Hill, 1991; Wang and Tarbell, 1993). The same

is true in the limit of no chemistry; in that case, the ampli-
tude is slightly larger (Leonard and Hill, 1988; Frankel et aL,
1993, 1995).
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The comparison between the fulJ second-order model (Eq.

12) and the algebraic closure in pred/cfing the scalar fluxes is
presented in Figure 5, and indicates that the transverse flux
as predicted by the algebraic closure is in close agreement
with that by the transport-equation model. However, there
are differences between the two predictions of the stream-

wise flux near the jet center line. The zero value of this
flux in the algebraic model is due to the thin-shear-layer ap-
proximation. The neglect of the axial diffusion in this
approximation combined with the gTadient diffusion nature
of the algebraic model can only yield zero flux values at the

of symmetay. While the thin-shear-layer approximation is
also invoked in the transport equation model the inclusion
of the streamwise convective effects in the transport equa-
tions can, and does, yield nonzero flux values. If the thin-layer
assumption is relaxed in the algebra/c model, the inclusion of
axial scalar gradients would generate nonzero scalar-flux val-
ues at the center Line, thus reducing the disagreement. It must
be noted tiff for this class of flows the cross-su'cam scalar

flux is more dominant than the streamwisc flux in influencing
the mean scalar dism'bution and the production terms. Thus,

the a_eement observed in Figure 5 is encouraging in support
of the algebraic approximation. Nevertheless, this is demon-
strated here only for a "simple" flow configuration. The in]-
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plementation of the model for complex flows would be very
useful in further assessment of the algebraic approximation.

The performance of the models for prediction of axisym-
metric jet flows is assessed in Figures 6 and 7 where the ex-
perimental data of Hussein et al. (1994), Abbiss et al. (1975),
Wygnanski and Fiedler (1969), and Rodi (1975) are used for

hydrodynamics variables, and those of Chevray and Tutu
(1978), Becker et al. (1976), and Lockwood and Moneib (1980)

for the scalar variables. The predicted hydrodynamic spread-
ing rate with the axisymmetric correction is 0.094, and is in
agreement with the experimental results of Hussein et al.

(1994). Again, all the mean values are reasonably well pre-
dicted. The same is true for the Reynolds stresses, except for
the streamwise normal stress in the central region for which
an improvement of about 30% can be obtained if all the com-
ponents of the rate of deformation tensor are considered.
Consistent with the planar-jet results, the model with coeffi-
cients of Rogers et al. (1989) results in lower scalar diffusivi-
ties. This model also yields lower values for the second-order
moments in the core. The model predictions based on the

coefficients of Launder (1975), Jones and Musonge (1988),
and Shih et al. (1990) overpredict the experimentally mea-
sured scalar's covariance and turbulent fluxes. The predic-
tions based on the model of Rogers et al. (1989) again yield
better agreement for the scalar fluxes. It is important, how-
ever, to indicate that the experiments of Chevray and Tutu
(1978) are not conducted in the self-preserving regions of the
jet. Therefore a definite assessment cannot be made without
comparisons with further data.

From the preceding comparisons, it can be concluded that

the algebraic model developed here provides an effective
means of predicting the second-order moments in reacting
turbulent flows. Because of their anisotropic feature, these
algebraic schemes are more general than the conventional

linear gradient-diffusion schemes (Toor, 1991). The explicit
nature of the relations is particularly convenient for applica-
tions in practical flows of the type considered by H6fler
(1993). With the reasonable agreement of the model results
with experimental data in simple configurations, the method-

ology is recommended for predictions of more complex flows.
Even so, the restrictions stemming from the assumptions in-

volved in the development of the models have to be clearly
underscored. The results shown here indicate the need for

refinement of current pressure-gradient correlation closures.

Moreover, the modeled transport equations for the passive
scalar dissipations have known inconsistencies (Pope, 1983).
These and the nature of the pressure-correlation models

might raise realizability concerns, which can he considerably
alleviated by implementing some of the techniques developed
by Shih and Shabbir (1994). The present models are devised
for high Reynolds-Peclet number flows; therefore some cor-

rections might be required for modeling of the near-wall re-
gions. In flows with important nonlocai effects such. as the

action of diffusion over long distances, rapidly varying flows,

or other kind of flows far from equilibrium, the results by
algebraic models are expected to have a larger departure h'om
those by the full second-order moment formulation. In flows

with very large strain fields there is a potential for singular
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behavior of the scalar-flux modeLs. This issue requires further

investigations of complex flows. Further improvements are

recommended by considering low Reynolds-Peclet number

effects, the higher-order moments of the scalar-scalar fluctu-

ations in reacting flows, and the effects of exothermicity in

nonequilibrium chemically reacting systems.
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Appendix

The procedure leading to explicit solutions for the scalar-

flux vector, as governed by Eq. 23 is described here.

Consider an arbitrary 3-D second-order tensor Q =[Q,j],
and the corresponding Kronecker tensor 6 _-[5,j ]. According
to the Cayley-Hamihon theorem, this matrix satisfies its own

characteristic polynomial:

Q3 _ IQQ2 + IIoQ _ IIIQ8 = O, (A1)

where IO = {Q} = Q,. n O = 1./2[{Q} 2 - {Q2}] = I/2[Q, Qj. -

Q,,Qji]. lifo = 1/6[{Q} 3 - 3{Q}{Q 2} + 2(Q3}] = I/6[Q,iQ#Qt _

-3Q, QjkQki + 2Q#QjkQk i] are the three tensorial invari-

ants. Multiplying the characteristic polynomial with Q-_ and

solving for the inverse, we obtain

Q-I 1 2
=,-_(Q -;oO +;;08).

(A2)

1

(8 + G) -_ - tn--_-_+[G 2+(2-/,,,a)G

+(1-- I,+ a +/IL+a)6]. (A4)

It is easy to show that ll+a" la +{S}, llj+a - 21_ + I1 c +

(/5}, lllI. a - I a + lla + II1 a +((S]/3). Therefore the nor-

malized scalar flux vector takes the form:

_o - aoC + atGC + azG2C (AS)

with the coefficients:

1+/c+//c
ao = - (A6)

1 + Ic + II a + 111_

l+/a

ax " 1 + I a + II e + Ill a (A7)

a2 -- 1 + l a + lla + 111c " (At)

In a solenoidal velocity field the pressure-scalar gradient

correlation includes a rapid term that satisfies the zero-diver-

gence constraint. This further translates into {A)- 0;, thus,

l 2
l- _.(G }

a° = - 1 2 + 1 (A9)
1-_-{G} 3 (G_}

al = 1 + 1 (A10)
1-_{G 2} 3 {G_}

a: = 1 1 3 (All)
1-'_{G2} + _{G }

The reacting case is somewhat more complex. Nonetheless,

by following the same procedure explicit solutions are
obtained:

This relation can be used now to fred explicit solutions to the

problem considered here. For example, for the case with Da

= 0 (pure mixing), we can write

¢o = -(,5 + G )-_C. (A3)

_. - aoC. + a_oc_+ a_aC,, + d, aC B+ a2a2C. + a'2a2C_

(A12)

¢_ = boC = + b'oC a + btXC = + b'lAC B + b2X2C= + b'zA2Ca,

(A13)

where G = D=A. Hence with the coefficients:
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, (A15)

BaBB[E(DB- D_,)+ FoDB]- DoFD
(A16)

B. DoFB - DBFa - E(Da - DoBoB B)

a'l" D= F_,FD_ E2B,,B _ (A17)

o.e_ - ED_a.a)
(A18)

D_,FB - ED,

d2 - - Bo FoFa _ E2B. B, (A19)

with the shorthand notations:

I B_,/ .(,(3)Fa (1-B,,B,) Do(2 2) D. D_ ]_ - D._--T -

(A20)

F# . (I_ BaBI()( DII (A 2 ) BIj1 Ba__.BIJI .DI] D_ T(A3} (A21)

E = _ + (x- a.B))- DoDf-:--. (A22)

The coefficients b_ are obtained from the a{s through the
permutations a -- O, /3 --- a. 0 --- _, ao -. b_, a'o ---.bo, a m--*
b'D a'1 _ b1, a 2 --) b_, and a'2"-)b2.

Mauutu:rtp¢recewed Dec. 16. 1996,and reuisionreceiuedMar. 14, 1997.
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I. Introduction

There has been a resurgence of interest in effects of compressibility on turbulent flows related to

the design of high-speed/high-altitude engines. Although experimental and numerical information

is growing (for reviews see Refs. 1-3), rational theoretical and modeling efforts are in a preliminary

stage of development. This is consistent with the fact that what is understood of the relative im-

portance of many of the different physical effects of compressibility is very much in flux -- changing

as more numerical simulation information becomes avmlable. While several issues regarding the

effects of the compressibility of turbulent fluctuations have been recognized, progress in incorporat-

ing the physics responsible for these new compressibility effects in single-point turbulence closures

has been slow. One of the major impediments to progress has been the absence of a procedure

that would allow for the inclusion of the effects of compressibility on the pressure-strain covariance

appearing in the second-order moment equations. A method of including compressibility effects as

they appear in the pressure-strain covariance and also the variable inertia effects are the subject of

the present study.

Several earlier studies have obtained closures for diverse effects of compressibility. Researchers

have, in general, exploited a decomposition of the compressible field into solenoidal and dilatational

parts. This has been done using a dimensional analysis in physical space 4 or in Fourier space, 5

asymptotic analysis, s rapid-distortion theory, 7 and a singular perturbation method, s All such

approaches have generated models for the scalar compressible terms, the pressure-dilatation and

the dilatational dissipation. These scalar terms appear in the kinetic energy equation for high-speed

flows. Such an approach to compressible turbulence modeling has been called, very sensibly, an

"energetic" approach to the effects of compressibility. 9 The models resulting from the "energetic"

approach to compressibility have been applied as compressibility corrections to the standard k -

model, 1° and their generalizations, s or to standard incompressible second-order moment [Reynolds

stress] closures. 11-13 Such a procedure implies, of course, a tacit assumption that compressible

effects do not manifest themselves in either the pressure-strain or in the dissipation of enstrophy.

Which is to say the effects of compressibility occur only in those terms explicitly linked to the

dilatational field. Thus, energetic approaches to the problem of compressible turbulence, as pointed
out in Simone et al., 9 are incomplete.

At one time, the pressure-dilatation and the compressible dissipation, on which modeling effort

has been expended, were believed to be the primary physical effects contributing to the reduced

growth r£te of the compressible mixing layer. Recent studies 14'15 have demonstrated that the

dilatational effects on the mixing layer are, in fact, much smaller than once believed. In addition,

more recent direct numerical simulations {DNS) suggest that the pressure-dilatation covariance is

nominally more important than the compressible dissipation, contrary to early proposals. 4,6 The

pressure-dilatation does not, however, account for the reduced growth of the mixing layer. It

appears, as suggested in Ref. 16, that the phenomena responsible for the reduced growth rate of

the turbulent shear flows is due to the reduction in the Reynolds shear stress anisotropy; this

effect is thought to be due to the effects of compressibility on the pressure-strain covariance. This
viewpoint is consistent with the earlier numerical studies. 17 The article 13 and the later is studied

Reynolds stress closures in the context of the DNS of the homogeneous shear. The study showed

that the inclusion of the [then] current compressible dissipation and pressure-dilatation models

in the Reynolds stress turbulence closures led to improved predictions for the turbulent kinetic

energy. However, there were no changes in the anisotropy consistent with that seen in DNS. The

authors concluded that the [then] current models were deficient primarily in the modeling of the



pressure-strain cov_riance which controls the level of Reynolds stress anisotropy.

It should be noted that the improved agreement for the time evolution of the kinetic energy, 13.1s
when using such models for the scalar compressible terms cannot be taken to indicate that such

flows were rationally predicted. The models current at that time, designed with erroneous assump-

tions regarding the importance of the dilatational effects, were providing dissipative behavior by a

mechanism that did not reflect actual flow physics. This has since been substantiated numerically

in the studies; 9,14-16 all of which indicate the lack of significance of both the pressure-dilatation

and the compressible dissipation. The fact that the compressible dissipation and the pressure-

dilatation are nomin_! effects is also consistent with the analytical development of Ristorcelli. s In

Ref. 8 the pressure-dilatation is shown to vanish as turbulence approaches equilibrium; the sim-

ulations mentioned are quasi-equilibrium flows for which the pressure dilatation is expected to

be small. It should be mentioned that in the homogeneous shear simulations, arguably the most

non-equilibrium of the benchmark flows, the pressure-dilatation- is small but non-negligible; it is
some 5-10% of the dissipation. Our position is the same as the position of Vreman et aL 14 as

pithily summarized in their conclusion. To paraphrase, turbulence models constructed using the

dilatational dissipation or pressure-dilatation to explain the suppression of the turbulence [in the

mixing layer]do not appear to be reflectingthe correctphysics.

Thus, ifitisassumed thatthe primary sourceof the reduced mixing ratein the mixing layeris

due to the reductioninthe shearstressanisotropyas indicatedby DNS then a closureofthe second-

moment or Reynolds stressequationsisin order:the pressure-straincovRrianceappearing in the

second-moment equationsisthe only possiblemechanism forsuch behavior.This isa substantially

more difficultproblem than that treated using the energeticapproach; the quantitiesrequiring

closureare no longerscalarsbut second-ordertensors. As one might expect, true compressible
second-ordermodeling attempts are few.z'19

This articledescribesthe development of a closurefor the compressible aspects of pressure-

straincovarianceappearing inthe Favr_-Reynolds stressequations.[As isclearfrom the material,

the phrase Reynolds stresseswillbe used to referto the Favrd-Reynolds stresses.]Closures forthe

unclosed terms involvingthe mean accelerationarealsoconstructed.In as much as many engineer-

ing calculationsare done with lowerorder closuresthisarticlethereforealsoincludesthe a_iditional

development ofthe second-ordermoment closureintoan algebraicReynolds stressclosure,used for

flows near structural equilibrium, following established procedures. 2°-2s

The algebraic Reynolds stress closure is noteworthy for the fact that it indicates that, even

in the absence of mean deformation, the mean density gradient is a source of turbulence stresses

in accelerating mean flows. As a consequence, for flows with large arbitrary mean density and

pressure gradients an eddy viscosity representation for the Reynolds stresses is, from first principles,

inappropriate. In the next section, Sec. II, the Favrd averaged nondimensional form of the governing

equations are given. Both first and second-order moment equations for a compressible medium,

with no combustion, are given. Issues related to moment closures for compressible turbulence are
also outlined.

The development of closures for the effects of compressibility in the Reynolds stress equations
is described in Sec. III. It is shown that, within the context of a pressure-strain closure linear in

the Reynolds stresses, an expression for the pressure-dilatation covariance can be used to construct

the off-diagonal components of the pressure-strain covariance. In this way the results of previous

"energetic" approaches, 9 to the effects of compressibility can be built into the deviatoric portion of

an expression for the pressure-strain. It is hoped that such a procedure would allow one to avoid the



development of a whole new theory and methodology forthe compressiblepressure-straintensor.

Closures for the effects of the mean acceleration, which involve the mass flux, are also developed.

The new closures account for the influence of the turbulent Mach number, and the mean density and

pressure gradients through a new quantity, the baroclinic dyad. The effects of the bulk dilatation are

also included. Section lII is concluded with a summary of models for the compressible dissipation;

given the acknowledged lack of importance of the compressible dissipation in weakly compressible

aerodynamic turbulence, as discussed above and in Sec. III, no development of models for the

compressibledissipation is pursued.

Starting with the closure for the second-order moment equations developed in Sec. III, Sec. IV

develops an algebraic closure for the Reynolds stresses. The physics of compressibility, as captured

by the full second-moment closure, are built into the simpler and more widely used two-equation k-_

platform. The tensor polynomial representation techniques employed produce both two-dimensional

and three-dimensional versions of an algebraic turbulence stress closure. Given the complexity of

the three-dimensional algebraic closure and the current status of single-point turbulence models for

three-dimensional flow only the two-dimensional model is developed into a working closure.

Section V focuses on a numerical investigation of the closures. The numerical method used to

simulate the free-shear flows of interest is sketched. The theory and results presented in earlier

sections are implemented in simulations in the mixing layer.

Simulations using second-order moment (SOM) closures as well as the algebraic models are con-

ducted. The numerical experiments are constructed with the intention of investigating several very

different issues of relevance to the prediction of compressible turbulent flows for engineering pur-

poses. Foremost in importance is the success of an algebraic stress model to reflect the compressible

physics of the full SOM closures.

The pressure-strain methodology developed for the SOM equations in Sec. III are general and

depend on a choice of closures for the pressure-dilatation. As consequence it follows that it is

necessary to understand sensitivity of the formulation to different models for the pressure-dilatation.

In this context two pressure-dilatation models are investigated.

In addition to assessing the sensitivity of the pressure-strain model to different pressure-dilatation

models and the suitability of the algebraic stress closure, we compare the computational results

to what is seen in numerical and laboratory experiments. Of particular interest is the well known

effect of compressibility on the reduction of the spread rate of the mixing layer. In as much as the

reduction in the spread rate is due to changes in the principal axes of the Reynolds stress tensor

the effects of compressibility on the anisotropy tensor are investigated. Given that the anisotropy

of the Reynolds stresses is dependent on the pressure-strain, the effects of compressibility on the

different components of the pressure-strain tensor are also investigated.

II. Governing equations

The problem formulation is now described. This includes a statement of the governing equations

- the first and second-moment equations. Indications of the modeling issues to be addressed in

subsequent sections are also given. The Favrd averaging procedure is first described.

The conservation equations for mass, momentum and energy in a Favrd setting are now derived.

The dependent variables used are the density p, the velocity u, and the total energy et = h-



p/p + uiui/2. The fluid is assumed to be Newtonian fluid satisfying the Stokes relation with zero

bulk viscosity and a constant molecular Prandtl number. Although real gas effects are of interest

for industrial applications there are a sufficient number of unresolved and more important issues

associated with compressibility that justify limiting the study to ideal gases. Consequently, the
pressure p is obtained from the equation of state p -- pRT.

The Favr_ averaging procedure is now described: denote by an over-bar the ensemble (or time)

average and by the brackets the density weighted ensemble (or time) average:

D

<x)= px
T (1)

The ensemble average obeys the following decomposition rules:

X = X" + X', X-'i = O. (2)

The Favrd average obeys the following decomposition rules:

x = (x) + x", (x") = o, :X = - (x). (3)

The application of the above averaging procedure on the instantaneous transport equations, de-

composing the variables Favr_ mean and fluctuating components, produces the Favr_ averaged

equations. The equations of motion are first rewritten in nondimensional form (with respect to ref-

erence values taken in the high speed stream: poo, uoo, Too,/zoo and the inlet value of the vorticity

thickness 6_). Using these reference quantities, we define the relevant nondimensional parameters:

the Reynolds number Re = poouoo6_/#oo, the Prandtl number Pr = cppoo/A, the mean flow Mach
number AI = uoo/_, "7 is cp/c,_. For this study, Pr = 1.

A. First moment equations

The mass conservation equation reads:

0-7+ 0xj -° (4)

and the conservation of momentum is:

Note that the stress tensor notation is changed to aji(u) = _[Sij(u) - ½Svp(u)$ij] = 2#S_.(u)/Re.

0__)(a_. + and for all the other linear differential operators, this newFor the strain rate Si/(u) = ½ 0=, 0=.

notation is more suitable when investigating compressible flows. In these instances the two types of

averages, having different properties with respect to the linear differential operators, are naturally
encountered. Hereafter any tensor with a star superscript will indicate the deviator - the traceless
portion of that tensor.

Two supplementary hypotheses pertaining to the molecular transport of momentum are set

forth: the viscosity fluctuations are unimportant and the mean viscosity i/z) is described by the

Maxwell-Rayleigh law, i.e.. it varies with the mean temperature as I/Z)//z,'cl = ((T)/Trcl)", m =

5



0.76.
Within the current notation the averaged stress _ji(u) is equal to aji((u)) + aj_(u-_).

The Favr_ mean of the total energy of the fluid et - T/[7(7 - 1)M 2] + ujuj/2 obeys:

The fluctuations of the viscosity and their correlation with other v_riables are neglected.

O-_(et) c_(et)(uj) (T_j(T) o_(u_e_')O---7--+ a., = a.j _ + ('a_j_(,,) - mA" (6)

As is the situation with the momentum equation, the molecular flux term in the energy equation

introduces the other type of mean quantity present in the Favrd formulation - the plain ensemble

mean. Using the new notation, the heat flux

8/"

(7 - 1)R ePrM_ Ozj
qj(T) =

has the resulting averaged expression:

_j(T) = qj((T)) + qj(T").

The remaining terms on the right-hand side of the energy equation can be expanded by using the

equation of state in the average sense

1

7M2_(T ). (7)

_(uj) + _M2_(u_'T" >,

Then the pressure work term is of the form

puj =

the viscous work term reads

_-Tej_(_)= <_,>aj_(<.))+ (_,)a,_(_'-_)+ Vaj_(<.))+ ."_a,,(.")

and the turbulent total energy flux is

I -'u"T"' - " " + P (u[u_'uC')
_(u_e'/)- 7(7 - I)M2P£ j )+ P(UJui)(ui) 2 "

The fluctuations of transported quantities in turbulent flows are sustained via interaction between

the mean gradients and the turbulence. The fluctuations will be characterized by length and time

scales of the order of those of the mean flow and which, provided the Reynolds number is large,

will be many orders of magnitude larger than the fine scales at which the molecular diffusion is

important. Thus the form of the moment equations carried in the closure development for the

computation of free shear flows will not include viscous transport effects.

6



B. Second-order moment equations

The average of the first moment of the Favr_ decomposed Navier-Stokes equations produces the

following second moment equations:

at + o_(.;'.J)<.k>0=k=__0 [_<.;'._.i:)+ r%_,k"+_6_k - ."#k,.,,,,,, ,-

+,,.O,._,((.>)O_ + _ a_kj((.))' a_ .[_'_("" ")a._0.7 + _,(-") j_/a,,:,l (s)

It is necessary to provide a closure for two compressible quantities: the pre_aure-strain correlation

and the mass flux/pressure gradient (the last three terms in the second line). The molecular

diffusion terms are generally small in high Reynolds number flows and will be negligible for problems
addressed here. It should be pointed out that, depending on how the derivation is done, the mass

flux terms multiply the acceleration of the mean flow. For this reason the ma.._ flux terms are often

called acceleration terms: they appear to be important in accelerating mean flows.

Various tensors are divided into their traces and their deviators. The production of the Reynolds
stresses becomes,

where P is the production of <k>. The pressure-strain covariance is written as

(9)

n;_ = n,j - 5p'd_,_= p, \_ + o_, ) - 5P'bT;__'_"

The viscous and pressure acceleration terms are written, respectively, as

(10)

. 2 2_0a_(<_))_.
- _ut Oz_ "0 (ii)

and

._, = ._,, - 5._,, : - _ + , _ - -_,c_-i__,,j . (_2)

Note that the mean pressure gradient appearing in Mij and the mean viscous stress appearing in

L_ can be replaced using the mean momentum equations. In which case they are written in terms

of the mean flow Lagrangian acceleration. Both of these terms involve the mass flux; any closure

for these two acceleration terms requires a closure for the mass flux. The dissipation is rewritten
as

2 ) 0"" Ou_ 2 0."_ _(.,,) :___-t_, (_3)

In turbulent free shear flows the viscous diffusion part is overlooked owing to high Reynolds numbers

7 i



which are characteristictotheseflows.The presentanalysiscan accommodate the discardedviscous

terms when necessary;the tensor Vii willbe carriedforgenerality.Furthermore, the turbulent

transportterms are consideredtogether"

(14)

The Reynolds stressor second-ordermoment equations are then written

2 [P + _¢--d+ jr4+_ +Y- z]&j (15)

The equation for the anisotropy The single-point anisotropy tensor, a, is defined

2

a,j - (u_'u_) / (k) - 560. (16)

The anisotropy has zero trace. Note that the Reynolds stress has been normalized by (k) and not

2(k); in which case this version of the anisotropy is related to an older definition by aij = 2bij. The

turbulence time scale is r = (k)]'_, where _, is the solenoidal dissipation. The second invariants of

the mean strain and rotation are denoted by a 2 = S_((u))S_i((u)) and w 2 = f2ij(<u))flii((u)).

In order to derive the algebraic stress closure in Sec. IV the second-order moment transport

equations are replaced with the equation for (k) and an equation for the anisotropy tensor. For

the algebraic stress closure the modeling procedure of Taulbee, 21 discussed further in Sec. IV,

is employed. Taulbee's procedure, in order to be consistent with observed asymptotic behavior,

chooses as dependent variable the ratio aij/(ra). The relevant form of the anisotropy equation is

Da,,/(ra) 1 [OT, ik (u:'u])On I aij [On OT_,]
ra'fi Dt - (k) L _ (k) o_zkJ - _-) LO_xk - rO-_xkJ

+_ + + + <j"__ ,,_j"] _

[ - ]P rDa 2M + V+gd -_. (17)
r _ L

U awhere D/Dt indicates the mean Lagrangian derivative, D/Dt = o + ( J)_-_x_"

The kinetic energy equation

__Jr.
Ot c_z_

The equation for the turbulent kinetic energy (k) = _, u(u_u_)/2 is

O _, ,, ,,,O(ui)
Ox_ " - ui a_, - Ozj

" --____ _Oa_i((u)) ,,_(u,,)O,_7+_'_- _' + _ _ _-_. (is)

The additional terms reflecting the compressible nature of the turbulence are on the last line;

they are, respectively, the pressure-dilatation covariance, the mass flux - mean acceleration, and



the compressible dissipation. Note that neither the pressure-strain nor the mass flux/pressure

acceleration terms, _ij, appear in the (k> equation. The effects of the pressure-strain and the

fl4ij, appears only in the Reynolds stress equations. Any classical two-equation turbulence model

cannot, as a consequence, account for the physics associated with these two unknown covaria_ces

that lead to changes in the Reynolds stress structure. Early approaches accounting for the effects

of compressibility have focussed only on the effects of compressibility as they occur in the energy
equation. This so-called %nergetic" approach, to use the phrase of Simone et al., 9 for the effects of

compressibility misses the changes in the Reynolds stresses due to compressibility and inertia. It is

for this reason that, in Sec. III, the second-order equations are closed. An algebraic Reynolds stress

closure is then derived in Sec. IV. In this way the structural effects of compressibility, for a certain

class of flows, can be accounted for within the context of a two-equation single-point closure.

The dissipation equation The dissipation appearing in the kinetic energy equation is typically

written, for locally homogeneous flows, 4,s,29

(19)

I ( 0_,, Ouwith f2ij(u) = _ _ - _j-_,) as the rotation rate. It is customary to compute the solenoidal dissipa-

tion from the incompressible k - _ model extended to variable density flows:

where C'q = 1.44 and C_2 = 1.92.

In the present closure formulation turbulent transport of the second order quantities are all

closed using a gradient diffusion model. Thus the turbulent transport of the product of fluctuating
quantities. _, is written

= -c, <,,7 0<-___>_> (21)<,,7--->
Ozj '

f=_ It Itwhere C_ is taken to be equal to 0.22 for all non-gradient correlations (e.g., F. =_ (k) or = - (uku _)),
whereas for the dissipation (--- = i,), Cs = 0.18.

III. Compressible closures for the second-order moment equations

This section describes the development of closures for the unknown terms in the second-order

equations. The pressure-strain covariance appearing in the Reynolds stress equations is closed using

a linear tensor polynomial representation in the Reynolds stress following well established proce-

dures similar to Launder et al. 3° In recognition of the minor role viscosity plays in high Reynolds

number free shear flows, only pressure-strain and pressure-acceleration closures are addressed. The

pressure-acceleration terms are closed using a leading order [isotropic] gradient transport expression

for the mass flux. The following section, Sec. IV, uses the results of the present section to obtain
an algebraic closure for the Reynolds stresses.

9
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A. A closure for the pressure-strain covariance

In incompressible turbulence the closure of the pressure-strain covariance by a tensor polynomial

linear in the Reynolds stresses is used with notable success for simple two-dimensional mean flows.

The procedure is standard; a popular early reference is Launder et al. 3° An updated version of

the linear 3° rapid pressure-strain modeling is given in Speziale et a[. 31 As the ultimate goal is

to devise an algebraic Reynolds stress model only pressure-strain models linear in the Reynolds

stresses will be considered. A discussion of nonlinear rapid-pressure-strain model and the need for

realizability can be found in Ref. 32. Additional discussion of the physical assumptions underlying

such methodologies can be found in Refs. 33-35.

The compressible correction to the pressure-strain covariance representation is obtained using es-
tablished linear procedures. As in the incompressible situation, 3°,34,32 the pressure strain-covariance

closure can be written as:

n,j - = A,j + [z qj + z.jq:][s..((.)) + u..((.))]. (22)

Such an expression is possible if the supplementary compressible terms appearing in the Poisson

equation for the pressure (see Appendix) are, in the weakly compressible limit, of higher order.

This will be the case if the evanescent wave portion of the initial value problem is not important

as is the case for aerodynamic applications. 36 The tensors in the above decomposition are modeled

as:

Aij = -Cl-fi _a;j + A_,v 3 (23)

Ipjq_
- + j +

"_" _2(¢_pqaij 4- ¢_piaqi -4- _ijapq 4- (_jqapi) 4- _3_qiapj (24)

Here _pjqi, following precedent, is linear in the Reynolds stresses satisfying necessary symmetry

requirements. There are five unknowns. To determine the coefficients in Zv._ql additional constraints
are required. As is the usual procedure, the normalization constraint, 3°'32 requires

Ippqi -- [(3_1 4- 2Ot2)(_qi 4- (3_! 4- 4/_2)aqi](i¢ ) --_ (ttqtti,u m}

which can be satisfied if

(25)

3c_1+2a2 = 2/3

3BI+4B2 = 1.

There are now three unknowns and additional information is required to obtain them.

In incompressible turbulence modeling the trace of the pressure-strain is zero, /:_kqk = 0, and

this provides the additional information to determine the unknowns. In compressible turbulence

the trace of the pressure-strain is the pressure-dilatation and the so-called continuity constraint
becomes

m

Akk 4- 4_ Zpkqk[Spq 4- _pq] = 2p'd. (26)

.-ks the right hand side, pd, is known from earlier energetic approaches to the compressible turbulence

10



modeling problem, the continuity constraint, F-xl. (26), becomes a constraint that determines the

coefficients in the pre_ure-strain closure. Note that as pd vanishes with turbulent Mach number

the incompressible limit, ,4_k + 4_ :T_kqk[Spq + f2pq] = 0, is recovered for vanishing compressibility.

As a consequence of the continuity constraint a certain combination of coefficients appears in

the final model. These are readily defined by a portion of Eq. (26) such that

:T_qi/(k) = (al + 4a_)6pq + (81 + 58_ -i"83)a_ = dlSpq -i- d2avq. (27)

The final model for the compressible portions of the pressure-strain is then written in terms of dl

and d2. The values of dl and d2, as will be indicated shortly, are then determined by the expression

for the pressure-dilatation. The values of the _i can be related to the di:

a_ = -dl/5 + 4/15,

81 = (15 + 6C2)/33,

83 = + C2/2.

a2 -- 3dl/10- 1/15

82 = -(2 + 3C2)/22

and C3 = (5 - 9C2)/11, C4 = (1 + 7C2)/11.

Application of the normalization and continuity constraints then allows the linear pressure_
strain model to be written as

. 2 . ][1 - Ca + 2d2] ai.Spj((u)) + S_p((u))a_,j - -_S_q((U))apqSiJa -

4 "!

[1 -- 6 4 -- 2d2][aipflpj((u)) - flip((u))anj ] + -_d2S_,n((u))aij ] (28)

which follows from Eq. (22) after subtracting the pressure-dilatation from the left side and the

pressure-dilatation model from the right side of Eq. (22). All terms involving the d; represent
corrections due to the compressibility of the fluctuations; the d_ vanish as the turbulent Mach

number vanishes. The terms involving the C_ come from the incompressible pressure-strain model.

In which case the choice of the C; allow one's favorite incompressible pressure-strain model to be

used. The above expression for the pressure-strain, reflecting the choice C2 = 0.45, is used in all

the calculations presented in this paper. In more complex flows realizability corrections may need

to be incorporated, in which case C2 would be a variable. A realizable form of the model is given
in an Appendix; more details can be found in Ref. 37.

1. Commentary

It has been seen that the knowledge of one invariant of the pressure-strain, the pressure-

dilatation, and the assumption of a form linear in the Reynolds stress allows one to obtain a

model for the deviatoric components of the pressure-strain tensor. In this way an independent new

theory for the compressible pressure-strain can be avoided by using the results of developments

for the scalar pressure-dilatation. The results of previous so-called energetic approaches, Simone

et al., 9 to the effects of compressibility is built into the deviatoric portion of an expression for the
pressu re-strain.

11



This point merits considerationfrom another point of view.

followingpartitionof the pressure-strain:

2--6

Consider, for the moment, the

(29)

For this subsection, the primes on p have been dropped. Here by s_j we now mean the deviatoric

portion of the fluctuating strain, s_j = 0, which contains solenoidal and compressible contributions

s_j = s_/+s_f, where, of course, s_/= slij. This is done for ease of presentation; in the nomenclature
of Sec. II these quantities would, of course, be represented by S_i(u" ) a precision unnecessary for

the present discussion. Thus one can write

_I _C 2m
PSi'---7= PSTj + PSTj + -_ pd 60. (30)

The term _t is closed using standard incompressible pressure-strain closures. The pressure
dilatation is closed using models already in the literature, see Sec. III.B below. In Sec. III.A an

expression for ps_jc has been obtained.

As has already been discussed in energetic approaches, the pressure-dilatation cannot account

for the suppression of the turbulence by the reduction in the shear stress as is seen in compressible

flows. A straightforward extension of the energetic approach to the second-order closure level

implies

2
p__ 7= + (31)

Such an expression, as is consistent with Refs. 13,18, is likewise unsuccessful in reducing the turbu-

lence shear stress. As will be discussed further in Sec. V the pressure-dilatation is a small quantity

and has a nominal effect, for _ _ 1, on the turbulence stresses and energy when it is included in

the spherical portion of the pressure-strain. Our procedure, using the pressure-dilatation, produces

an expression for the compressible contribution to the deviatoric portions of the pressure strain,

psi3 c. In fact, as was born out by computational experiments, had the expression

[without p'-d on the diagonal] been used in the numerical investigations reported in Sec. V, our

results would not have changed much, for cr < 1.

2. Pressure-dilatation models

n

To obtain the final form of the pressure-strain an expression for pd is required. There are some

choices. Some proposals for p-"drequire the solution of transport equations for the density variance s

or pressure variance, r There are two pressure-dilatation models s'3a that do not require separate

equations. The model of Sarkar 38 is:

D 1

_I-lr, p = fd= -3x1M2t[3 (v_Mt

P X2
8X3)_(k)Spp + _ Zs] (33)

Xa v_Mt X1

12



where Xl = 0.15,X_ = 0.2,and X3 = 0 (stillto be determined by the author). Note that the model

as we have grouped the terms makes itappear as ifitissingularin Mr; itismost definitelynot

singular.The model of Ristorcellis is

3
¢---a

= -xM_[P - "__+ Tk - _M_7(7 - 1)(Pr +_ Z+ TT)]

2 ,D( 3a2 + 5_2)
-'_<k)ml x -D7 (34)

where

2I,_ , x'= gd
x = 1+ 2I,dM?+ _I,dMt_(_- 1) 1+ 21,dM?+ _1_dM_"r(_-1)'

(35)

Here c_ is the proportionality constant in the Kolmogorov scaling; we return to this in more detail

below. In the above expression, TT is the transport of the mean temperature including effects such

as heat flux and the turbulent or pressure transport. The production term PT, contains the mean

pressure dilatation and the mean dissipation with positive sign (heat release term). These two

models, as well as a third (the Aupoix model), have been discussed in Ref. 39.

The di are determined by the pressure-dilatation model. For the Sarkar model, one requires
that

dl -- 8x3M_ d2-- xIMt
3 ' --7 (36)

For the Ristorcelli model one requires that

d, = xM_ d_ xM_ (38)3 ' =--T-

3 2
= xM_[_ + ";M i 7(7- 1)(PT + _ _)]- -_{k>M_x'D(3a,.,:

5w 2)
2 (39)

Transport terms have been neglected; this is necessary to obtain an algebraic closure [which requires

homogeneity]. The compressibility of the turbulence will only be important where the turbulence

energy is large [and thus also Mt], which is typically in regions of large production and where

transport is not as important. Which is to say that transport is only of importance in the periph-

eral regions of simple flows - regions where the turbulence intensity is low, production low, and

[therefore] the fluctuations are essentially incompressible.

13



B. The mass flux and pressure-acceleration closures

The models for mass fluxes have not undergone much development and their importance in a

general flow is not fully understood. Judging from the equations one ca_ infer that the mass flux

will be important in accelerating flows with large density gradients. There has been some research
on the mass flux: Taulbee and VanOsdol 5 solved its transport equations and Ristorcelli 40 showed

how an algebraic model for the mass flux can be obtained from its transport equation:

- r o<,:,)
ozj axk azj

(4o)

where r_ = Mtrl[1 + 2L (P/(P _) - 1)]. Here vo, vi and v2 are the coefficients retrieved from

r_ __l_. -(1 + IG + llG)l'2; i,'l (1 + IG)vi,the inversion of the matrix Gij = 6ij + u Ozj " Uo = =

v_ = (1 4- IG + IIG 4- IIIG)-l, the Roman numbers representing the invariants of G. Note that the

leading order term is a gradient transport model. For an isotropic turbulence, an eddy viscosity

formulation is possible. For the present set of simple benchmark shear flows, one does not expect

the mass flux terms to be very important - the mean flow does not accelerate much. We shall use,

for the sake of simplicity, the eddy viscosity form of the mass flux - the lowest order contribution in

the polynomial given above. This is consistent with the gradient transport model used in Ref. 11.

The baroclinic dyad, a tensor product formed from the mean density and pressure gradients, is
defined as

7_ii = Oxi Oxj (41)

and the mass flux/acceleration terms in the second-moment equations can then be written, using

the leading order portion of Eq. (40) - equivalent to replacing the Reynolds stress by two thirds of

turbulent kinetic energy times the Kronecker tensor, as

2 6 12 .1 2r_vo(k)(7_ q + _ji - _Tipp ij) = ----wt4;j : - p -_ _fi-_ru vo (k ) R i3 (42)

2
where R[: = 7_u + 7_:i - 5_pp6U.

C. The compressible dissipation

There are several models available for the compressible dissipation. 4-e's Many of these models

reflect certain assumptions regarding the importance of the compressible dissipation observed in

early DNS of compressible turbulence. The compressible dissipation has since been found to be less

important than originally believed. In fact, the low turbulent Mach number asymptotics s indicate

it varies inversely with the Reynolds number and as a consequence is negligible in engineering flows,

though perhaps not in low Reynolds number DNS. Compressible dissipation models are nonetheless

included for completeness.

As the Taulbee and VanOsdol5 compressible dissipation model requires additional transport

equations, in the spirit of computational simplicity, that model will not be used. The closure

proposed by Sarkar et al. 6 is based on ideas from linear acoustics and appears related to the initial
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value problem._ Itcan be written as

zo= 3 ,ZoM (43)

with a. -- 1.0 from DNS of decaying compressible turbulence; unfortunately this arrangement was

deemed to lack universality. 19 Zeman 4 provides a model on the grounds that eddy shocklets occur

in high speed flow and relating this assumption to the dilatational dissipation:

zc= 0.75(1- exp{-[(3(1 + - (44)

It has been shown by Blaisdell et al. 41 that Zeman's model gives incorrect scaling between c, and

e=. Besides, the exponential dependence on M_ delivers a steeper growth rate reduction compared
to other models.

As has been mentioned in more recent DNS studies, 9,14,15,42 have demonstrated that dilatational

covariance closures with a M_ scaling predict effects of compressibility when they are, in fact, very

small. In an asymptotic analysis, Ristorcelli s has found that the compressible dissipation has an

M_ dependence and is inversely proportional to the turbulent Reynolds number:

= + 6I:I ]+ [3 2+

]}[3Ir [13a _ 15_2]r2a_I; (45)

The parameters are I_ = 0.3, I_ = 13.768, I_ = 2.623, I[ = 1.392, I_ = 3 and a_ = 0.4 - 4 is the

Kolmogorov scaling coefficient. Also, M_ denotes the turbulent Mach number, that is M_ = 5(k)/c2 2

and Rt the turbulent Reynolds number Rt = _4<k)2/(9e,#)Re. The local speed of sound is given
by c2 = T/M 2. For high Reynolds number flows, in the absence of wall effects, viscous diffusion is

negligible.

As this article focuses on a closure for the Reynolds stresses, the turbulent temperature flux

and its transport equation modeling is not presented here. The reader is referred to the thesis of

Adumitroaie3 T for a treatment of the thermodynamic modeling issues. It should be made clear that

the findings, for the classes of flows with which we are concerned with in this article, are insensitive

to the turbulent temperature flux modeling. For simple unidirectional shear flows without strong

heat transfer effects the difference between a second-order closure and an eddy viscosity closure is

negligible. This cannot be expected to be true for more complex flows.

At this point the Reynolds stress equations have been closed and it is possible to compute

the flow using a second-order closure. Such computations are the subject of Sec. V. There are,

however, a wide class of engineering flows that can be computed using simple algebraic Reynolds

stress models. An algebraic closure for the Reynolds stresses is now developed.

IV. A compressible algebraic Reynolds stress model

A quasi-explicit algebraic model for the Reynolds stresses is now derived. An algebraic Reynolds

stress model comes from the fixed point solution of the evolution equations for the anisotropy tensor.

These equations can be thought of as describing a turbulence in a state of structural equilibrium:
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the fixedpoint solutioncorrespondsto an exact solutionof the Reynolds stressequations.

Several permutations of quasi-explicitalgebraicReynolds stressexpressionsexist.2°-2s The

qualifier_quasi-explicit"isused to indicatethat,as the fixedpoint equations are nonlinear,the

solutionisgiven implicitly.A notableexceptionisthe recentexplicitalgebraicmodel of Girimaji2s

who has found the exact nonlinearsolutionto the fixedpoint equations. The inceptionof our

work predates2sand our procedure followsprecedentssetby.2°.21,2eThe polynomial representation

methods willbe used to obtain two-dimensional and three-dimensionalversionsof the algebraic

turbulentstressmodels.

The method of algebraicstressmodeling introduced by Taulbee21 isused. This involvesthe

ansatz

D aij
D-"t[_-'aa] = 0, (46)

which allows relaxation effects to be built into the Reynolds stress model. Equation (46) allows

a relaxation of the anisotropy to its equilibrium value at the same rate that the relative strain

reaches its equilibrium value. 21 The major improvement due to the formulation in Eq. (46) comes

at small applied strains. It can be shown that Eq. (46) produces a stress model consistent with the

weak strain expansion of the Reynolds stress equations; the usual algebraic stress modeling ansatz,
D
Zii aij = 0 does not.

The combination of transport terms in Eq. (17) is set to zero following established algebraic

stress modeling procedures:

Applying these approximations results in a quasi-linear tensor expression for the anisotropy.

If bl = s_ _ _dl, b2 = I 2_-,iSVuUO, b3 "- C3 - 2d2, b4 = C4 + 2d2, and5

g = Ci_ + C,2 - + (2 - C")-P-p,. + a'D-'}- + T(1 - 2d2)Sp,((u)) + P_. J (48)

the algebraic fixed point form of the Reynolds stress anisotropy equation is written

f ( ) ]a=-gr biS'+b2R'+b3 aS*+S'a-g{aS*)6 -b,(afl-f/a) (49)

where the curlybracessignifythe trace.From thisexpressionitisseen that the anisotropy tensor

aij -----aij(S', f_, R') (50)

is dependent on three second order tensors, two symmetric and one skew-symmetric.

A. A three-dimensional algebraic Reynolds stress model

Standard representation theory methods can be applied to obtain the solution aij = aij (S*, ft, R*)

to Eq. (49). In contrast to the incompressible case the solution of Eq. (49) is now much more dif-
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ficult inasmuch as the procedure now involves an additional tensor. Following standard methods

the solution can be expressed as a finite 3-D tensor polynomial,

a = (51)

comprised of a linear combination of all the independent tensor products (generators) formed from

the three primary tensors. The coefficients in the polynomial are functions of the independent

invariants of the tensors. For this problem the dimension of the [minimal] tensor base is A = 41
(cf. Spencer43). This is very large and is unlikely to be used in practice.

The complexity presented by such a large tensor basis can be side stepped by simplifying

approximation regarding the b3 term. It has been argued 21,2r that for the range of values used for

the constant C2 the inequality C3 _ C4 holds and thus the term multiplied by C3 will only have a
small effect on the solution. This approximation decouples the contributions of S* and R'to a. As

the equation is linear the solution is determined using the superposition principle. This one allows
to split the problem into two equations of lower tensor base dimension:

a ----a S -{-aR

where as standsforthe solutiondependent on S*,

(52)

aS = -gT [biS"- b4(aSgl- flas)]

and aa denoting the solutiondependent on R"

(53)

a R -- -gr [b2R* - b4(aRf/- ftaR)] . (54)

The decomposition of a into portions dependent on S" and R* is unique.

Applying the results from Ref. 21 the strain dependent portion of the solution for the anisotropy
tensor can be written

a s = -2C, rS" - 4o2r2(S'ft - ITS*) - 8a3r3(f_2S_ + S*ft 2 - 2{S*12_}6 )

1 )-16,_4r4(_S'122 _ n2S'fl) _ 32asrS{S*_2}(n2 - (55)

r 2 2 = ½blb4g2h2, v_3 = _blb4g hi, c_4 = -_blb4g hi, as = iblb4g hi,where C_, = blg(l+_how )hi, o2 3 2 3 3 3 4 3 4 s

ho : b4gr, h, : h2[1 + 2h02_2] -' and h2 = [2 + h2ow2]-'.

Using a similar procedure the portion of the Reynolds stress anisotropy dependent on the
baroclinic dyad is written

aR = -2C.rR" - 4o_r2(R'fl - f_R') - 803r3(122R" + R*f_2- 3{R*ft2}6)

-16_,r4(ftR'ft 2 - fl2R'f/)_ 32asrS{R*ft2}(ft_ _ _{ft2}5) (56)

in which the coefficients have the same form as those in as with the exception that bl is replaced

by b2. To obtain the full anisotropy tensor the two complex expressions Eq. (55) and Eq. (56) need
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to be added. In the light of the complexity of the three-dimensional formalism a two-dimensional

formalism is developed.

B. A two-dimensional algebraic Reynolds stress model

A simpler and tractable two-dimensional treatment is possible. In many engineering flows the

mean flow and the statistics of the turbulence are two-dimensional. The two-dimensional problem is

less complicated as the number of tensor products necessary to express the solution is substantially

reduced. The symbols S, 12, R now denote two-dimensional tensors.

It is necessary to recast the equation for the anisotropy in terms of the traceless 2-D tensors:

s,j_,,_-'=s_,,_S_),_,(-_,_..........,_,.. -- , (__s(<")) : = Rij (p, p) - _R_(_, _)6ij . Here, the two-dimensional

Kronecker symbol is J(=) --- [_!])]'- = 1 for i = j = 1, 2 and 0 otherwise. The pressure-strain model

is then written:

r 2 . 1
[1 +

L - o J

The pressure acceleration is written

[1 -- C4 - 2d2] [aip_pj (<u>) -- _ip (<u>) apj]+

] ,,?,
(57)

._,5 = -_ _-,,,_o(k)_j+ _5,-,,,,o(k)R,,,, . (58)

The fact that both 2D and 3D. expressions of the pressure-strain correlation model must give

the same result when applied to two-dimensional mean flows will be used for our simplifications.

Recasting the model in 2D is done to take advantage of the simplifications that result from the 2D
structure.

Inserting the closures for the pressure-strain and mean acceleration terms, F_lS. (57), (58) into

the Reynolds stress equation, using the same ansatz regarding transport at a fixed point, the 2D

analog of Eq. (49) is obtained:
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with

8 2 12

b, = -_ - -_d,, b2 = _-_r=vo, b3 = C3 - 2d2, b4 = C4 + 2d2,

bs = bzS_((u}) + b2/_(_,_), be = 2b3S_((u)) (60)

and g having the same expression as in the 3-D algebraic equation. The two-dimensional polynomial
solution of Eq. (59) is, as before, also written as

"= (61)
A

Unlike the three-dimensional solution, however, the generators now consist of only five tensor
groups:

TO = 5 5 (_)
Tz=S__ *, T2=S__*Q-f/_SS *, T3=R *,3 2 ' T 4 = R*fZ - n _R" (62)

for which there are five non-zero independent invariants,

a2={--S'2}, w2=-{f/2}, {R*2), {_R'S_.*}, {S_*R*I'/}. (63)

The factthat thereare no other independent tensorgenerators[orinvariants]can be verifiedusing
the 2 x 2 matrix identity:

2abc = bc{a} +a{bc} + ac{b} - b{ac} +ab{c} + c{ab} -

c{a}{b} - a{b}{c} + ({ac}{b} - {acb})$ (2). (64)

To obtain the solutionto the algebraicequationsforthe anisotropytensor,Eq. (59),a procedure

similarto the one devised by Pope 2° isused. Three 5 x 5 matrices_/_,J_, Z#, are defined:

T"S'_ + -S'T'7 - 3{TvS*}$ = _ 7_.TA
A

T_f/" - Q'T" = _ ff_T _

= (65)

for which A -- 0 - 4. The elements of the matrices are determined from the above equations by
making use of matrix relations stemming from the Cayley-Hamilton theorem. The 2-D tensor

polynomial a = __,,xC'XT'X is introduced in both sides of Eq. (59). By making use of the above

matrix identities the coefficients of the tensor polynomials are found to satisfy the following system
of equations:

C_ = -gr [b161_ + b263A + b3 _-_Cn74_ - b4 E C"J_ - bs6oA - b6 _ C"_] .. (66)

The solution of this system of equations determines the model coefficients in the following algebraic
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expression for the anisotropy tensor

a= -2C_r [Q2S__*+ (QI + Q3)b3gf27"_ 2 (3 _- 6(2))+ Q_b.gflr(S_*Q-. S*)]

-2C_r __* + b.gf, r(R*N - fl R*)] (67)

suitable for two-dimensional mean flows. The eddy viscosities, C. and C_, are given by:

big f1�2

1 - _ (b3gr)2a2flf2 + 2(b4gflr)2w 2 (68)

b2gfl/2

1 + 2(b4gflr)2w 2" (69)

C,u --

=

The Q, coefficients are given by

Q1

Q2

Q3

b2 [{_S._*} 2gflrb4{S______}]- 1 + _ + (70)

2 (b3gr)2a2flf2 b3b5 ,

= 1 + _ 1 + 2(b4gflr)2w 2 (Q1 - 1) - -_-_lg]2r (71)

bs 1 + 2(b4gflr)2w 2

= bl b3 2g fl ra 2 (72)

with fl = (1 +b6gv/6) -1 and f2 = (1- b6gr/6) -1. Note that the direct effect of compressibility as

reflected in the baroclinic dyad occurs in Q1 and Q2.

The high order of nonlinearity of the algebraic equations does not permit, in general, the

construction of a fully explicit solution. Instead, an iterative approach is employed during the

computations to generate the correct values. The algebraic solution is linearized by lagging the

turbulence production term which contains the nonlinearity.

C. Discussion

To conclude this section some general statements regarding the behavior of the algebraic closure

derived for the Reynolds stresses are highlighted. In Sec. lII a closure for the Reynolds stress equa-

tions was obtained. In the present section the fixed point solution of the modeled second moment

equations, under the condition of structural equilibrium, was obtained. For two-dimensional mean

flows the compressible algebraic stress model can be symbolically written as

(73)

Note that products of the mean strain and the baroclinic dyaxi do not appear. This is due, for

two-dimensional flows, to the relation T'_S* + _S'T" - _{TnS*}6 = -2_[TnS*}T°; the generator

comprised of the mean strain and baroclinic dyad product is redundant. Examining the above
expression, the following observations can be made:

1. The first two terms are the same terms obtained in algebraic stress closure for two-dimensional

[in the mean] incompressible flows.
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.

4.

The first two eddy coefficients are functions of the relative strain and the relative rotation

as is the case in incompressible flows. They are now also functions of the turbulent Mach

number and the gradient Math number.

Neither of these eddy coefficients depend on baroclinic effects.

It is seen that in the absence of mean velocity gradients that the turbulence is anisotropic
due to the mean baroclinic dyad. This anisotropy manifests itself in the deviatoric as well as

diagonal terms.

It is useful to construct a simple example to see how the new effects influence the anisotropy.

Consider a simple shear flow with a streamwise acceleration: let the Favr_ mean velocity, the mean

density and the mean pressure gradients be represented by U1,2, U1,1, V_ - p,2, and VP - P,l.

2 1 1

all = -_v, oU1,1 +_vnU_, 2 + _v,2 + v_,Ui,2p,2 P,I (74)

1 1 US 1
= v,oUi,1 - + v,2- Ui,2 (75)

1 2

a33 = "_ Vto Ul,l - "_ut_ (76)

1 1

al_ = -_v_oUi,2 -_vnUl,_ UI,1 -v_0_,_ P,I (77)

Several observations regarding the above algebraic expression for the anisotropy can be made:

.

.

.

The expression is the first [that we know of] rigorous indication of the direct role the baroclinic

dyad plays in determining the Reynolds stresses.

The expression indicates that, for arbitrary mean deformation, the mean baroclinic dyad

contributes to the deviatoric portions of the Reynolds stress.

The expression also indicates that the baroclinic dyad also changes the relative magnitude of
the normal stresses. This effect only occurs for mean deformations that are rotational. For

an irrotationai mean deformation the baroclinic dyad makes no contributions to the normal
stresses.

4. For a uniform mean velocity the baroclinic dyad is a source contributing only to the deviatoric
portions of the anisotropy tensor.

5. The expression indicates the inapplicability of any heuristic gradient transfer arguments for

the Reynolds stresses in flows with important gradients of mean density and pressure.

While these results indicate the inapplicability of any form of eddy viscosity model for the stresses

in compressible flows with arbitrary large density and pressure gradients some qualifications are in

order. The presence of the baroclinic dyad is likely to be important only in rapidly accelerating

aerodynamic flows or in combusting flows where one can expect the mass fluxes to be important.

In the absence of these effects it appears that the parameterization of the Reynolds stresses in

terms of powers of the mean deformation with modifications according to the compressibility of the
fluctuations as those indicated in Sec. III is appropriate.
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V. Computational investigations of free shear flows

The theory and results presented in the previous sections axe now implemented over a very wide

range of mean flow Math numbers in the simulation of free shear flows. Simulations using second-

order moment (SOM) closures as well as the quasi-explicit algebraic models are conducted. The

numerical experiments are constructed with the intention of investigating several different issues of

relevance to the prediction of compressible turbulent flows for engineering purposes.

In addition to assessing the sensitivity of the pressure-strain model to the different pressure-

dilatation models we compare the computational results to what is expected from laboratory and

numerical experiments. Of particular interest is the well known effect of compressibility on reduction

of the spread rate of the mixing layer. The main objective is to assess the effectiveness of the

compressibility corrections in reproducing the reduced growth rate of the free-sheax lgyers with

increasing M_h number - a phenomenon which is well documented experimentally. 44 We also

study the adequacy of the algebraic stress closure with the results of the SOM simulations. In

particular the Reynolds stresses and the anisotropy computed using both of these procedures are

compared to solutions without the compressible corrections in order to assess the effects of the new

pressure-strain closure on the anisotropy. Our intention is to further investigate the notion that

the dramatic reduction of the mixing layer growth rate is due to the effects of compressibility on

the pressure-strain and, consequently, its effect on the reduction of the turbulence shear stress.

A. Numerical method

The simulations are conducted using a finite difference scheme 45 second-order accurate in time

and fourth-order accurate in space. The governing equations are integrated explicitly in time using

the predictor-corrector finite difference scheme developed by Gottlieb and Turkel. 46 The Gottlieb-

Turkel scheme is a higher order accurate variant of the MacCormack 47 predictor-corrector method.

During a numerical sweep, the inviscid fluxes are alternatively differenced backward in the predictor

step and forward in the corrector step. Fourth-order central differences are used for the viscous

and heat flux terms as well as for the derivatives in the source vector. To maintain stability, it

is required that the CFL number be less than 2/3. To prevent numerical oscillations in regions

of large gradients a smoothing scheme devised by MacCorma_k and Baldwin 4s is employed. The

method, as outlined in Ref. 45, adds artificial viscosity that is very small everywhere except in the

regions where the pressure oscillates.

All simulations are conducted on a uniformly spaced grid in the computational domain. By

means of a coordinate transformation the mesh is transversally compressed in the physical domain

in the region corresponding to the mixing layer.

The physical domain is a rectangular box defined by the set of points (x,y), in which z rep-

resents the streamwise coordinate and y the transversal coordinate. The grid overlaying the com-

putational domain of size z/_ x y6_ has 100 x 60 points, where the vorticity thickness Jw =

(ul - u2)/(cg(u)/cgy),,_a_. In this nondimensionalization, the reference length scale is the magnitude

of the vorticity thickness at the inlet. The initial profile for the mean axial velocity is adjusted such

that the resulting nondimensional vorticity thickness at the inlet is equal to one. The values of the

physical dimensions are (z, y) = [80, 20] for the mixing layer. To evaluate the grid sensitivity the

number of grid points is increased by a factor of 1.5. The change in the steady-state values of the

peak of the turbulent stresses is less than 2 percent.
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To accelerate convergence to the stationary state, a local time stepping technique is used. The

convergence criterion is imposed so that the global averaged residual profile attained is station-

ary for each dependent variable. Although more stringent criteria can be sought, it is known, 49

that predictor-corrector schemes are limited in their ability to achieve very high rates of residual
reduction.

Due to the nonlinearity of the destruction terms, the k-E equations display a stiffness which can

either generate numerical instabilities or increase the computational time. In order to avoid these

inconveniences the turbulence source terms are treated implicitly. The k - { destruction terms are

decoupled by suitable manipulation of the {/k ratio, treated as a known quantity from the previous
time step.

Initial and boundary conditions The initial fields are obtained by propagating "the inflow

conditions throughout the entire domain; hence, the flow has to sweep the domain at least one

time to obtain meaningful results. For ease of computation, the inflow initial conditions (IC) for

the flow variables are assumed to be a smoothed step (hyperbolic tangents for the axial velocity or

species) or a smoothed hat profile (for turbulence quantities). Uniform profiles are assigned at the

inlet to the static pressure, to the static temperature and, by virtue of the equation of state, to the
static density.

The boundary conditions (BC) are set according to the elliptic nature of the problem on all

four boundaries. The inflow BC are fixed (Dirichlet) for all primary variables in the supersonic

and subsonic regions with one exception. For the portions where the flow is subsonic the pressure

is allowed to adjust to the characteristic waves through a Neumann boundary condition. At the

outflow and outer boundaries zero gradient (Neumann) conditions are applied due to their non-

reflective properties in relation with the outgoing waves. In the mixing layer, the static pressure,
temperature and density in the two free stream layers are matched. This isolates the contributions

to the layer growth to those due solely to the variation of the reference Mach number.

Free-shear flow parameters The magnitude of the effects of compressibility are often param-

eterized by the convective Mach number, s° In our formulation the expression for the convective

Mach number is Mc = M(1 - r_)/2, where r_ = u2/ul is the axial velocity (u) ratio. A wide range

of values of Mc including both subsonic and supersonic regimes are considered: 0.2 < Mc _ 2.0.

The convective Math number is varied by keeping the velocity ratio constant, r_ = 1/2, and varying

the reference Mach number M. The reference Reynolds number is Re = 5 x 106, while all other

nondimensional parameters are kept constant. The subscript 1 refers to the high-speed stream

value, while the subscript 2 refers to the low-speed stream value in the mixing layer. In the results

presented, the spatial coordinate, for the hydrodynamic variables, is given by _ -- V-_(a=°'5) where

= _1-_" Only the mixing layer simulations are presented in this article. Simulations for the jet
configuration can be found in Ref. 37.

After an initial period of flow development a linear growth rate of the shear layers is attained.

In the fully developed regime, when a linear growth rate has been established, the mean velocity
and the normalized Reynolds stresses display self-similar behavior. The spread rate of a turbulent

shear layer, in the self-similar region, is conventionally expressed as dJ_,/dx -- C5(1 - rv)/(1 -F rv)
where J_ could be either the 10 percent visual thickness of the shear layer based on the normalized

velocity profile or the vorticity thickness, and C_ is a constant (approximately). As the present

article is concerned with compressible corrections to the turbulence moment equations no plots of
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the mean flow quantities are given; the mean field variables are quite typical and can be seen in
the literature.H'SLs2

Model calculations Computations are performed with several different forms of closures. The

presentation of the results is much clearer if we designate precisely what equations are used for

what calculations. The central methodology is based on the models of Ristorcelli .s Thus KF_,-Rist

represents the k - _ model equations Eqs. (4, 5, 6, 7, 18, 20), with the Ristorcelli compressible

closures Eqs. (34, 45). KF_,-Sarkar denotes the k - e model equations, with the Sarkar compressible

closures Eqs. (33, 43). KE-Zeman is the k-e model equations, with the Zeman compressible closure

Eq. (44). ARSM denotes the k - e model equations Eqs. (4, 5, 6, 7, 18, 20), with the 2-D ARSM

compressible closures Eqs. (38, 48, 60, 67-72). ARSM-Sarkar denotes the k - _ model equations,

with the 2-D ARSM compressible closures Eqs. (36, 48, 60, 67-72). SOM represents the second

order model equations Eqs. (4, 5, 6, 7, 15, 20), with the compressible closures Eqs. (28, 38, 42).

B. Mixing layer simulations

The primary concerns of this article are with 1) a representation of the effects of compressibility

as they appear in the pressure-strain covariance and 2) the construction of an algebraic Reynolds

stress model useful for engineering calculations. Studies related to both these issues, for the Mc =

1.07 mixing layer configuration, are shown in the first two figures. The Reynolds stresses and the

production/dissipation ratio obtained for ARSM and SOM calculations are shown in Figs. 1 and

2. Also shown, as a double check, are curves based on an a priori evaluation of the algebraic

stress model; the data from a SOM calculation is used as input to the ARSM. The neglect of

turbulent transport in the algebraic stress model is reflected in differences in the normal stresses at

the centerline. In general the a priori evaluated ARSM curves follow closely the computed ARSM

values indicating that for this flow the neglect of transport in the moment transport equations is

justified. The algebraic approximation is, as has been verified at several different convective Mach

numbers, suitable for an investigation of trends in this flow configuration.

Also shown in Figs. 1 and 2 is the SOM computation without compressibility corrections [NC - no

compressibility], i.e. dl and d2 are set to zero. The effect of the compressibility corrections manifest

themselves as decreases in the centerline values of (uu), (uv) and (vv) of approximately 16_0,25%

and 24_ respectively. This is consistent with that seen in DNS. In addition, the streamwise normal

stress suffers a smaller reduction than the other Reynolds stresses. This, as will be seen, will

manifest itself in an increase in the streamwise normal anisotropy.

The production/dissipation ratio is shown in the bottom of Fig. 2. The average level of PIe for

the compressible case is smaller than the incompressible case; this is consistent with the reduced

turbulent kinetic energy of the compressible flow. While the overall level of the production is

smaller it is interesting to note that at one location in the mixing layer, the centerline, P/_ is

nominally higher. It has been conjectured that this might be due to the higher relative strain rates

compressible flows may be able to sustain. This is an issue that further DNS may resolve.

Figure 3 displays the vorticity thickness. Vorticity thickness spread rates as predicted by the

SOM simulations, with and without (NC) the compressibility correction, are shown on the top of

Fig. 3. It is seen, that even with such modest contributions from compressibility, scaling as they do

with M_, a sizable change in growth rate is seen. The variation of Mt with Mc is shown in Fig. 5.
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Figure 3 also displays the different components of the pressure-strain tensor computed from the

SOM simulation with and without (NC) the compressibility correction. The different components

of the pressure-strain are all reduced by about the same amount. This is precisely the behavior

seen, in both direction and magnitude, in the recent DNS Is - see figure 4.18 from Ref. 15.

Reynolds stress anisotropy In Fig. 4 the computed values of the centerline Reynolds stress

anisotropies are shown. At low values of compressibility the anisotropy has values similar to that of

simple incompressible shears. At higher levels the anisotropy behaves very much like the compress-

ible shear DNS; more of the energy of the turbulence is in the streamwise component as made clear

by the increase in a11. This is at the expense of the crosstream component, (vv), which is reduced.

This is, as shall be discussed further, due to the reduction of intercomponent energy transfer due
to the compressible aspect of the pressure-strain. There is also a reduction in the shear stress as is

seen in compressible DNS.

Comparison with laboratory Reynolds stresses The effects of the new compressible models

on the anisotropy is shown in Fig. 4. Unfortunately, in the laboratory situation, the spanwise
Reynolds stresses are rarely measured. As a consequence the anisotropy is not known and one

returns to primitive variables.

The maximum values of diverse Reynolds stresses in the mixing layer are plotted as function of

the convective Mach number in Fig. 4. In this figure au and av represent, respectively, the (uu) and

(vv) Reynolds stresses nondimensionalized by the square of the velocity difference across the layer.

Also shown are the experimental results of Elliot and Samimy. s3 Underlying this comparison is, of

course, the implicit assumption of self-similarity. The maximum Reynolds stresses decrease with

compressibility. In the present simulations, however, the peak values of the turbulence intensities

(axial and transverse) do not vary as strongly as in the laboratory findings of Goebel and Dutton. s4

In fact the present simulations are closer to the results ofeither Ref. 54 or Ref. 53 than either Ref. 54
or Ref. 53 are to each other.

There appears to be a discrepancy. A survey of the diverse compressible DNS indicates that

all increases with compressibility. This implies that (uu) decreases more slowly than (vv). [Figure

9 of Ref. 14 is the most comprehensive presentation of this trend.] This does not appear to be the

case in all laboratory experiments. In the mixing layer of Ref. 53 (uu) decreases more rapidly than

(vv) for all Mc implying that all decreases with increasing compressibility contrary to DNS results.

In Ref. 54 (uu) decreases more rapidly than (vv) for low Me; while at moderate Me, (uu) decrease

less rapidly than (vv) in accord with DNS results. No explanation for this discrepancy between
laboratory and numerical data is known.

The pressure=strain tensor The effects of compressibility on the Reynolds stresses are believed

to be the source of the dramatic influence on the spread rate as the convective Mach number

increases. The physical mechanisms responsible for these phenomena were once believed to be the

compressible dissipation and pressure-dilatation which caused a decrease in the Reynolds stresses

due to an overall decrease in k. This was accompanied by no substantial changes in the anisotropy.

As discussed in Sec. I, recent simulations suggest that compressibility causes a turbulent shear stress

reduction due to a reduction in its associated anisotropy. This is a statement that compressibility

manifests itself structurally, not energetically. The reduction in the anisotropy leads, of course, to

a reduction in k and ultimately in the mixing layer growth rate.
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More recent simulations, 9'14-16 all seem to indicate that the major changes in the shear stress

are due to the effect of compressibility on the pressure-strain cowriance. Figure 6 is an illustration

of this idea: Fig. 6 depicts the different components of pressure_strxln tensor and its trace [the

pressure dilatation] at the centerline of the mixing layer. Figure 6 is patterned after Vreman et

al. 's14 figures 3 and 9. The behavior of all the components of the pressure-strain, shown in Fig. 6,

are very much in accord with the figures of Ref. 14. The only notable difference is the relative levels

of ri22 and 1-I33. The trends are very much the same and the relative behavior - a commensurate

across the board reduction with Mc - is very much in accord with Ref. 15.

The behavior of the pressure-strain illustrated in Fig. 6 is very much in keeping with the current

understanding of the mechanism for the reduction of the turbulence energy by the reduction of the

shear stress: the only source for the kinetic energy is in the (uu> component and its production

is proportional to (uv). The reduction [in magnitude] of tin and I"I22 means that less energy

generated in the (uu I equation is transferred to (vv) [by ri22]. As (vv) has no production (vv> is

much smaller. As consequence of the fact that the production of (uv) is proportional (vv) much

less (uv) is produced and much less (uu) is produced. This can be seen by the considering the

truncated forms of the second-order moment equations:

D

D-'-_(uu) ~ - (uv)Vl,2 + IIll + .... (78)

D (vv> I122 + (79)
Dt

D ~ - + n,2+ .... (80)
Dt

The thesisof Freund Is providesa schematicof the above process. The behavior of the Reynolds

stressesand the pressure-strainindicatedby Figs.2 and 6 isconsistentwith the mechanism forthe

reductionjust delineated.Specifically,the factthat lessof the (uu) energy istransferredto the

other components of the Reynolds stressmeans that the anisotropy,an = 2bH, must increaseas

seen inallthe DNS. Note also,as might be expected fora quasi-equilibriumflow,that the pressure-

dilatationas derivedby the asymptotic procedurein Ref.8 isvery small;negligiblein comparison

to the pressure-strain.Yet itsuse to obtainthe deviatoricportionsofthe pressure-strainproduces

a very sizablereductionin the shear stressand the growth rate.

Gradient Mach number Sarkar 16 and earlier work cited therein have drawn attention to the

gradient Mach number as a potentially useful parameterization of the effects of compressibility.
Many of the effects of compressibility, as indicated by diverse DNS, have been observed to become

more apparent as the gradient Mach number increases. Shown in the bottom of Fig. 5 is the

gradient Mach number using the definition M 9 = _M,a(k)/_,. The definition of the gradient Mach

reflects the fact that the Kolmogorov scaling, _ --, (k)3/_/e has been used to eliminate the length

scale in the definition M 9 = af/c. In DNS, the length scale _ is determined from the two-point

correlation; no such opportunity occurs in single-point closures. Both the DNS, for example figure

4.29 in Ref. 15, and the SOM simulation indicate a similar decrease in rate of increase of M u with
Me. The decrease seems to occur at lower Mc in the DNS. This is likely to be related to the different

length scales used.

One of the noteworthy observations made of the effects of compressibility is their tendency to

saturate. 11 In the bottom of Fig. 5 the rate of increase of the maximum turbulent Mach decreases

at higher convective Mach numbers. This is in line with other observations. 11
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Kolmogorov scaling While in DNS a length can be determined from the two-point correlation,

no such possibility exists for single-point closures. Yet a length scale, reflecting the two-point nature

of the turbulence problem, as seen analytically in Ref. 8, is required. The length scale appearing
in the Kolmogorov inertial range scaling, ( ,,., (k)312/_, was used in Ref. 8.

There is a proportionality coefficient, a, in the Kolmogorov scaling _ = Ll/(2_/3)3/_. For infi-

nite Reynolds number isotropic turbulence a --_ 1. For finite but large Reynolds number anisotropic

turbulence undergoing deformation the Kolmogorov scaling is likely to be useful but _ is likely to be

a flow dependent quantity. Sreenivasan s5 h'as made some studies of the variation of the Kolmogorov

scaling coefficient: he has found values of _ ranging between 0.4 - 2 for diverse incompressible sim-

ple shear flows. To allow for the expected variability of c_ two different values of are used in many
of the simulations. The value of c_ does not change any of the trends and does not seem to have

too strong an effect on the energy at the centerline (see Figs. 4 and 5). It does however-effect the

mixing layer spread rate as can be seen in Fig. 8.

Mixing layer growth rates Settles and Dodson 44 have compiled a very large number of exper-
imental results. 5°'s4'56--61 These are shown in Figs. 7 and 8. The scatter in the data reflects the fact

that different experiments are done in different wind tunnels, with different inlet configurations and

with different reservoirs. The computational curves shown in Figs. 7 and 8 reflect two different but

complementary investigations. As the "Langley curve "s_ has been a popular benchmark it has also

been included. The well known reduction in the mixing rate with increasing -_/c is seen in all the
data.

Figure 7 reflects computations using the "energetic" approaches. A k - ( scheme has been used

to calculate the mixing layer growth and the only compressible corrections are in the/c equation;

the Reynolds stresses are closed with the usual incompressible eddy viscosity [Boussinesq] approxi-

mation. Figure ? indicates that the results based on the KE-Zeman and KE-Sarkar schemes capture

the mixing layer reduction. The reduction of the mixing layer growth rate has been captured by
similar mechanisms in both models; most of the suppression is provided by a substantial amount of

additional dissipation that comes from the compressible dissipation models. As was pointed out in

Sec. I, the compressible dissipation, as indicated by several DNS and by asymptotic analysis, s does

not play an important role in these classes of flows. Any arbitrarily dissipative term added to the

/c equation, appropriately calibrated and scaled, can produce very good agreement for the mixing

layer growth. Moreover, as with v.ll energetic approaches, there is no possibility of accounting for

the very important structural changes that appear in the anisotropy.

As indicated by Fig. ? the pressure-dilatation model of Ristorcelli s by itself, with _ = 2, accounts

for a nominal suppression of the growth rate. The compressible dissipation being negligible in

analysis of Ristorcelli s is not included in this calculation. From incompressible DNS, es it can be

argued that a value of c_ _ 1 might be more appropriate. As the pressure dilatation scales with _

a value of a -_. 1 would decrease the pressure-dilatation effects by a factor of four.

Figure 8 reflects a computation using the compressible algebraic Reynolds stress model. This is

exactly the same computation as given in the Fig. 7 with the exception that the algebraic Reynolds
stress approximation now includes the effects of compressibility in the pressure-strain covariance.

Note that there are substantial changes on the layer growth rate prediction. The change is more

drastic for the ARSM modeling than the ARSM-Sarkar modeling; this is to be expected a.s the

majority of the growth rate reduction using the earlier Sarkar modeling was built into a dissipative

term (which does not contribute to the modeling of the pressure strain) and the relative change is
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small.

The algebraic model built upon dilatational closures of Ristorcelli s shows improvement over

the results from a simple k - c scheme. Figure 8 depicts the outcomes of the computations with

the Ristorcelli s based algebraic closures for two values of the Kolmogorov scaling coefficient. The

results for c_ = 0.4 with both the pressure-strain and pressure-dilatation provide a modest decrease

in the spread rate - matching that predicted with simply the pressure-dilatation with _ = 2. The

ARSM calculation predictions are substantially reduced when c_ = 2. If _ were an undefined ad

hoc constant one might be tempted to set it so as to match the reduction in spread rate indicated

by the data. Given that little is known about c_ [though it is sure to be in the range 0.4-2.0 and

most likely c_ _ 1] these issues must be explained by DNS.

It is concluded that the present pressure-strain modeling method based on the extension of

the well-established incompressible procedure, in which the trace-free constraint is relaxed, does

rationally account for a significant portion of the reduction in shear stress and growth rate. This

procedure is considered a leading order contribution to the compressible turbulence shear stress

problem. The possibility that additional compressible corrections to the pressure-strain, addressing

physics not able to be accounted for using this constitutive relation methodology, may require
consideration.

VI. Some issues in compressible turbulence modeling

In our effort to obtain a closure for the effects of compressibility a few issues, already alluded
to, have become clearer. These issues are now highlighted.

The baroclinic dyad The procedure invoked to obtain the algebraic Reynolds model indicates

that the baroclinic dyad is a source of turbulence. This, of course, can be anticipated by inspection

of the second-order moment equations. The consequence is that an eddy viscosity representation
for the Reynolds stresses is, from first principles, inappropriate for classes of flows in which the

mass fluxes are important.

The presence of the baroclinic dyad is likely to be important only in rapidly accelerating aero-

dynamic flows such as through shocks or in hypersonic situations. The baroclinic dyad is also

likely to be important in combusting flows where one can expect the mass fluxes to be important.

In noncombusting supersonic flows it appears that a parameterization of the Reynolds stresses in

terms of the mean deformation with modifications for the compressibility of the fluctuations as

derived in Sec. III.A appears appropriate.

A length scale for single-point models of compressible turbulence In Ref. 8 the effects of

the non-zero divergence of compressible turbulence was parameterized by several two-point integrals

made nondimensional by a length scale. For single-point turbulence closures the length scale chosen

is typically that appearing in the Kolmogorov scaling, c ,,_ k3/2/£, which is often taken to be the

integral length scale of the longitudinal correlation.

For compressible turbulence of interest to supersonic aerodynamic flows the cascade mechanism

will be comprised of the usual nonlinear solenoidal modal interactions. The Kolmogorov scaling
is expected to be valid in the weakly compressible limit. However, given the observed effect of
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compressibility on the length scale seen in simulations (see figure 4.28 of the recent report 15) one

might expect the coefficient of proportionality, a, to be a function of compressibility. That this

might be the case is also suggested by the appearance of different instability modes in compressible

flows. Studies similar to the incompressible studies shown in Refl 63 appear to be both interesting

and very relevant to issues of compressible turbulence modeling.

It should be understood that the Kolmogorov scaling coefficient, a = _,l/(2k/3) a/2, is not a free

parameter in the sense used in many turbulence model closures. The Kolmogorov constant appears

in definite physical relationship having a precise mathematical definition, a clear interpretation in

terms of flow physics, and substantial theoretical and numerical substantiation. It is, in principle,

measurable for any flow. This in contrast to an ad hoc modeling constant; such a constant is often

determined by calibrating the results of the model equations to some experimental data. Such a

"calibration constant" has neither a precise mathematical definition or a clear interpretation in

terms of flow physics and is dependent on the set of model equations used to compute the flow.

Experimental differences in numerical and laboratory data There appears to be a unani-

mous agreement in the DNS that, with increasing gradient or convective Mach number, all increases

while a22 and a12 both decrease. This trend does not appear in the laboratory mixing layer exper-

iments. At low Me, (uu) appears to decrease more rapidly, with increasing compressibility, than
(vv). This implies that all decreases with compressibility in contradistinction to DNS results. It is

crucial to understand the cause for the differences between the DNS and the laboratory flows of the

(uu I Reynolds stress behavior; turbulence models are based on intuition gleaned from DNS data

but are used to predict engineering flows that are more similar to laboratory flows. The present
computational results are closer to either of the laboratory experiments of Ref. 53 or Ref. 54 than

the laboratory experiments of Ref. 53 or Ref. 54 are to each other. Earnest speculation on the

source of the differences in the two experiments and facilities is required.

VII. Summary and conclusions

Progress towards the development of a compressible turbulence closure, starting at the level

of second-order moment equations, has been described. Modeling from the second-order level

accommodates important structural changes that appear in the anisotropy and are a feature and a

function of compressibility. In the second-order moment equations the compressible contributions to

the pressu re-strain covariance have been obtained. The pressure-strain has been closed by assuming

that, as is consistent with the weakly compressible limit, it can be modeled as a tensor polynomial

linear in the Reynolds stresses. The difference from the incompressible case is that the trace of

the compressible strain is not zero; it is set equal to the pressure-dilatation for which models exist.

The compressible pressure-strain closure features a dependence on several turbulence descriptors:

the turbulent Mach number, the relative strain, the gradient Mach number, the production and

the dissipation. As a consequence the coefficients in the compressible pressure-strain closure are

not constants but functions of parameters the turbulence and its compressibility.

In addition to devising a closure for the pressure-strain, a closure for the mean acceleration/mass

flux terms appearing in the Reynolds stress equations has also been developed. For the flows

studied in this article, limited as they are to the flows for which experimental data are available,

the acceleration/mass flux moments are not important. The mass flux terms will be important in

the combusting or hypersonic flows which motivated the thesis. 3_ Further development of the mean
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accelerationterms requiresexperimental data for this class of flows.

Having closed the compressible Reynolds stress equations standard tensor representation theory

has been used to produce a compressible algebraic Reynolds stress model useful for flows near

structural equilibrium. A noteworthy feature of this portion of the work is that the role that the

mean pressure and mean density gradients plays on the Reynolds stresses is immediately seen. As

a consequence, it is seen that the baroclinic dya_l can, in the absence of mean velocity gradients,
contribute to the anisotropy of the turbulence. It is also seen that the mean bulk dilatation

contributes to the anisotropy in a way that is quite different from an irrotational mean strain.

The mathematical results developed here have been implemented in mixing layer computations

spanning a wide range of mean flow Mach numbers. In this article the discussion has been limited

to the compressible mixing layer for which a sizable amount of literature exists. The calculations

presented have been organized along two themes: 1) an investigation of the effects of compressibility

as related to the compressible pressure-strain and the Reynolds stresses and 2) a validation of the

algebraic Reynolds stress model predictions.

The computations with the compressible pressure-strain indicate that the present modeling

[which does not have undefined tunable constants] produces precisely the behavior seen in the

DNSI4'Is; there is a commensurate reduction, with increasing convective Mach number, of all the

components of the compressible pressure-strain tensor. The changes in the pressure-strain lead, as

is established by DNS of several different flows, 14-16 to changes in the anisotropy of the Reynolds

stresses. The changes predicted by the modeling for the normal and shear anisotropies are very

consistent, in trend, with DNS data and especially with the DNS of the mixing layer 14 -- the flow

configuration most similar to the one treated in this article. Comparison between the computa-

tional predictions and laboratory results for the Reynolds stress and their behavior with increasing

compressibility is not as good as might be hoped. This is due to unknown experimental issues: the

agreement between even the different laboratory experiments is poorer than the agreement between
the numerical and experimental results.

All the laboratory data do however agree on the trend, with increasing compressibility, of the

mixing layer growth rate and its kinetic energy: it decreases. The computational experiments

conducted indicate that sizable reductions in the mixing laver growth rate accompany changes in

the anisotropy of the turbulence due to the compressible aspects of the pressure_straln covariance.
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Appendix A

The Poissonequationfor the fluctuating pressure is obtained by taking the divergence of the

Navier-Stokes equations. Both instantaneous and averaged forms of these equations are necessary

in the derivation. The subtraction of the mean equations from the instantaneous equations and

simple term manipulations involving the continuity relation provide the desired Poisson equationS:

c92p' O_p'
02 [p'(ui)(u,) + " " + pu;'(uj) + p(ui>u._ --_<u_u_)] +

Ozix: PUi ui

4 02 r i_ 1

The solution for the fluctuating pressure can be determined by using Green's functions or Fourier

transforms. With respect to the incompressible counterpart, the compressible Poisson equation is

severely complicated. An equivalent form which resembles more to the incompressible equation can
be obtained as:

02P'c3z_ 02P'Ot2 --"'-'-'02 Oz,z:O2r"" _(u_'u_>]. 02- 2Ox,xjP'(Ui)u J tPui=: - _ 20x,x-_(u,)%_ " ÷

4 o2 [. o,, 1
3Oz_ I._e 0"_zkJ (82)

The last term on the right hand side (RHS) converts, when the fluctuating pressure solution is used

to determine the pressure-strain correlation, into a viscous interaction tensor whose trace is equal

to the ditatational dissipation. In the absence of walls this term can be omitted in high Reynolds

number flows. The acoustic term (the first term on the RHS) is difficult to be taken into account

in the present analysis. If it is assumed that the pressure fluctuations are caused by turbulence

only then this term is negligible. The condition p_/-_ << 1 allows the neglect of the second term

on the RHS. The remaining terms are the return-to-isotropy and the rapid part for which known
modeling principles can be applied in the limit of low convective Mach numbers.

Appendix B

It well known that for linear pressure strain forms it is impossible to satisfy realizability con-

ditions - the requirement that the eigenvalues of the Reynolds stress tensor remain positive. Sat-

isfying realizability is a very practical computationally stabilizing requirement. Our experience

with computations in complex flows indicates that realizability is very useful. The model is now

made (weakly) realizable following methods suggested by Schumann _ and Lumley 34 and detailed

by Shih and Shabbir. 65 Let F = 1 + 271II/8 + 9II/4 is a parameter involving the second invariant
ll = 1-_aijaj_ and third invariant 111 = --laijajkaki of the Reynolds stress anisotropy tensor.

Then the following asymptotic behavior for the pressure strain-model ensures that realizability is
satisfied:

2

.,4,, - -_-p_ = C F" as F .-.+ O
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where the index e indicatesthat the relationsare writtenin the princip_laxes of -#-#_(u_uj/. The

computationM form of the model with the addition_lpara_netersnecessaryto enforcerealizability

so necessaryforcomputation_l stabilityis

(84)

with Us - (5- 9C2)/II and C4 - (I+ 7C2)/II.The valueforthe constantC2 willbe the same asin

the incompressiblemodel to preserveconsistencyinthe zero Mach number limit,that isC2 - 0.45.

The parameters are a_ = 0.1,/3r= 0.5,Ar = min(F -a', 0.1-a') and B_ - min(F -_', 0.1-#s,).

Using this modified form of the pressure-strain model the ARSM coefficients become: bl --
2

4 _ B_F_( _ + gdl) ba -- _r_Uo, b3 = 1 - B_F_'(1 -C3+ 2d2) b( - 1 - B_F_'(1 -C( - 2d2)
and

_ P r Dag= A, Fa'CI_ +Ce2-2+(2-Cc_)_-_s÷- a -y +

2r(1 _ 2d_B,F_)S_((u)) + 2.M + fd- _ L (85)
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Figures

FIG. I. Comparisons between ARSM and SOM calculationsfor the mixing layer,Mc - 1.07;(a)

streamwise normal Reynolds stress;(b) Reynolds shear stress.[a - 1.2]

FIG. 2. Comparisons between ARSM and SOM calculationsforthe mixing layer,Mc = 1.07;(a)

crosstream normal Reynolds stress;(b) turbulent kineticenergy production over dissipation.

= 1.2]

FIG. 3. Influence of the compressibility correction in SOM calculations for the mixing layer, Mc -

1.07; (a) the vorticity thickness; (b) components of the pressure_straln tensor. [_ - 1.2]

FIG. 4. Variation with convective Math number in the mixing layer; (a) centerline Reynolds stress

anisotropies; (b) centerline Reynolds stresses. [a = 1.2]

FIG. 5. Variation with convective Math number in the mixing layer; (a) maximum turbulent Mach

number; (b) maximum gradient Mach number.

FIG. 6. Variation with convective Mach number for the mixing layer; the pressure-strain tensor.

[a = 1.2]

FIG. 7. Effect of compressibility on normalized thickness growth rate, k- _ calculations of a mixing
layer.[Q -- 2]

FIG. 8. Effect of compressibility on normalized thickness growth rate, ARSM calculations of a
mixing layer.
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